Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(7): e0027024, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38860767

RESUMO

Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE: Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fosforilcolina , Fatores de Transcrição , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
mSphere ; 9(7): e0038824, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38940507

RESUMO

The adaptation of gene deletion methods based on the CRISPR-Cas9 system has facilitated the genetic manipulation of the pathogenic yeast Candida albicans, because homozygous mutants of this diploid fungus can now be generated in a single step, allowing the rapid screening of candidate genes for their involvement in a phenotype of interest. However, the Cas9-mediated double-strand breaks at the target site may result in an undesired loss of heterozygosity (LOH) on the affected chromosome and cause phenotypic alterations that are not related to the function of the investigated gene. In our present study, we harnessed Cas9-facilitated gene deletion to probe a set of genes that are constitutively overexpressed in strains containing hyperactive forms of the transcription factor Mrr1 for a possible contribution to the fluconazole resistance of such strains. To this aim, we used gene deletion cassettes containing two different dominant selection markers, caSAT1 and HygB, which confer resistance to nourseothricin and hygromycin, respectively, for simultaneous genomic integration in a single step, hypothesizing that this would minimize undesired LOH events at the target locus. We found that selection for resistance to both nourseothricin and hygromycin strongly increased the proportion of homozygous deletion mutants among the transformants compared with selection on media containing only one of the antibiotics, but it did not avoid undesired LOH events. Our results demonstrate that LOH on the target chromosome is a significant problem when using Cas9 for the generation of C. albicans gene deletion mutants, which demands a thorough examination of recombination events at the target site. IMPORTANCE: Candida albicans is one of the medically most important fungi and a model organism to study fungal pathogenicity. Investigating gene function in this diploid yeast has been facilitated by the adaptation of gene deletion methods based on the bacterial CRISPR-Cas9 system, because they enable the generation of homozygous mutants in a single step. We found that, in addition to increasing the efficiency of gene replacement by selection markers, the Cas9-mediated double-strand breaks also result in frequent loss of heterozygosity on the same chromosome, even when two different selection markers were independently integrated into the two alleles of the target gene. Since loss of heterozygosity for other genes can result in phenotypic alterations that are not caused by the absence of the target gene, these findings show that it is important to thoroughly analyze recombination events at the target locus when using Cas9 to generate gene deletion mutants in C. albicans.


Assuntos
Sistemas CRISPR-Cas , Candida albicans , Perda de Heterozigosidade , Recombinação Genética , Candida albicans/genética , Candida albicans/efeitos dos fármacos , Deleção de Genes , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Fluconazol/farmacologia , Higromicina B/farmacologia , Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Estreptotricinas/farmacologia , Marcadores Genéticos
3.
Clin Microbiol Infect ; 29(12): 1602.e1-1602.e7, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666448

RESUMO

OBJECTIVES: The aim of this study was to determine how mutations in CpERG11 and CpTAC1 contribute to fluconazole resistance in a collection of clinical isolates. METHODS: Sequences of CpERG11 and CpTAC1 were determined for 35 resistant Candida parapsilosis clinical isolates. A plasmid-based CRISPR-Cas9 system was used to introduce mutations leading to amino acid substitution in CpTac1 and CpErg11. Triazole susceptibility was determined by broth microdilution and E-test. Differential expression of genes mediated by CpTAC1 mutation was determined by RNA sequencing, and relative expression of individual transporter genes was assessed with RT-qPCR. RESULTS: Six isolates carried a mutation in CpTAC1 in combination with the CpERG11 mutation, leading to the CpErg11Y132F substitution. When introduced into susceptible isolates, this CpERG11 mutation led to a 4- to 8-fold increase in fluconazole minimum inhibitory concentrations (MIC; 0.125 µg/mL vs. 0.5 µg/mL, 0.125 µg/mL vs. 0.5 µg/mL, and 0.5 µg/mL vs. 4 µg/mL). When introduced into a susceptible isolate, the CpTAC1 mutation leading to the G650E substitution resulted in an 8-fold increase in fluconazole MIC (0.25 µg/mL vs. 2 µg/mL), whereas correction of this mutation in resistant isolates led to a 16-fold reduction in MIC (32 µg/mL vs. 2 µg/mL). CpCDR1, CpCDR1B, and CpCDR1C were overexpressed in the presence CpTac1G650E. Disruption of these genes in combination resulted in a 4-fold reduction in fluconazole MIC (32 µg/mL vs. 8 µg/mL). DISCUSSION: These results define the specific contribution made by the Y132F substitution in CpERG11 and demonstrate a role for activating mutations in CpTAC1 in triazole resistance in C. parapsilosis.


Assuntos
Antifúngicos , Fluconazol , Humanos , Antifúngicos/farmacologia , Fluconazol/farmacologia , Candida parapsilosis/genética , Triazóis/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutação , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana
4.
Clin Microbiol Infect ; 28(6): 838-843, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34915074

RESUMO

OBJECTIVE: Candida auris has emerged as a health-care-associated and multidrug-resistant fungal pathogen of great clinical concern. As many as 50% of C. auris clinical isolates are reported to be resistant to amphotericin B, but no mechanisms contributing to this resistance have been identified. Here we describe a clinical case in which high-level amphotericin B resistance was acquired in vivo during therapy and undertake molecular and genetic studies to identify and characterize the genetic determinant of resistance. METHODS: Whole-genome sequencing was performed on four C. auris isolates obtained from a single patient case. Cas9-mediated genetic manipulations were then used to generate mutant strains harbouring mutations of interest, and these strains were subsequently subjected to amphotericin B susceptibility testing and comprehensive sterol profiling. RESULTS: A novel mutation in the C. auris sterol-methyltransferase gene ERG6 was found to be associated with amphotericin B resistance, and this mutation alone conferred a >32-fold increase in amphotericin B resistance. Comprehensive sterol profiling revealed an abrogation of ergosterol biosynthesis and a corresponding accumulation of cholesta-type sterols in isolates and strains harbouring the clinically derived ERG6 mutation. CONCLUSIONS: Together these findings definitively demonstrate mutations in C. auris ERG6 as the first identified mechanism of clinical amphotericin B resistance in C. auris and represent a significant step forward in the understanding of antifungal resistance in this emerging public health threat.


Assuntos
Anfotericina B , Candida auris , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Esteróis
5.
Microbiol Spectr ; 9(3): e0158521, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878305

RESUMO

Resistance to fluconazole is one of clinical characteristics most frequently challenging the treatment of invasive Candida auris infections, and is observed among >90% of all characterized clinical isolates. In this work, the native C. auris ERG11 allele in a previously characterized fluconazole-susceptible clinical isolate was replaced with the ERG11 alleles from three highly fluconazole-resistant clinical isolates (MIC ≥256 mg/L), encoding the amino acid substitutions VF125AL, Y132F, and K143R, using Cas9-ribonucleoprotein (RNP) mediated transformation system. Reciprocally, the ERG11WT allele from the same fluconazole-susceptible clinical isolate, lacking any resistance-associated mutation, was introduced into a previously characterized fluconazole-resistant clinical isolate, replacing the native ERG11K143R allele, using the same methods. The resulting collection of strains was subjected to comprehensive triazole susceptibility testing, and the direct impact each of these clinically-derived ERG11 mutations on triazole MIC was determined. Introduction of each of the three mutant ERG11 alleles was observed to increase fluconazole and voriconazole MIC by 8- to 16-fold. The MIC for the other clinically available triazoles were not significantly impacted by any ERG11 mutation. In the fluconazole-resistant clinical isolate background, correction of the K143R encoding mutation led to a similar 16-fold decrease in fluconazole MIC, and 8-fold decrease in voriconazole MIC, while the MIC of other triazoles were minimally changed. Taken together, these findings demonstrate that mutations in C. auris ERG11 significantly contribute to fluconazole and voriconazole resistance, but alone cannot explain the substantially elevated MIC observed among clinical isolates of C. auris. IMPORTANCE Candida auris is an emerging multidrug-resistant and health care-associated pathogen of urgent clinical concern. The triazoles are the most widely prescribed antifungal agents worldwide and are commonly utilized for the treatment of invasive Candida infections. Greater than 90% of all C. auris clinical isolates are observed to be resistant to fluconazole, and nearly all fluconazole-resistant isolates of C. auris are found to have one of three mutations (encoding VF125AL, Y132F, or K143R) in the gene encoding the target of the triazoles, ERG11. However, the direct contribution of these mutations in ERG11 to fluconazole resistance and the impact these mutations may have the susceptibility of the other triazoles remains unknown. The present study seeks to address this knowledge gap and potentially inform the future application the triazole antifungals for the treatment of infections caused by C. auris.


Assuntos
Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Farmacorresistência Fúngica/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Mutação , Triazóis/farmacologia , Substituição de Aminoácidos , Candidíase , Sistema Enzimático do Citocromo P-450/genética , Fluconazol , Proteínas Fúngicas/genética , Humanos , Testes de Sensibilidade Microbiana
6.
PLoS Pathog ; 17(9): e1009884, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506615

RESUMO

Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.


Assuntos
Candida albicans/genética , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alelos , Animais , Candida albicans/patogenicidade , Feminino , Variação Genética , Humanos , Camundongos , Virulência
7.
mBio ; 11(3)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398311

RESUMO

Candida auris has emerged as a multidrug-resistant pathogen of great clinical concern. Approximately 90% of clinical C. auris isolates are resistant to fluconazole, the most commonly prescribed antifungal agent, and yet it remains unknown what mechanisms underpin this fluconazole resistance. To identify novel mechanisms contributing to fluconazole resistance in C. auris, fluconazole-susceptible C. auris clinical isolate AR0387 was passaged in media supplemented with fluconazole to generate derivative strains which had acquired increased fluconazole resistance in vitro Comparative analyses of comprehensive sterol profiles, [3H]fluconazole uptake, sequencing of C. auris genes homologous to genes known to contribute to fluconazole resistance in other species of Candida, and relative expression levels of C. aurisERG11, CDR1, and MDR1 were performed. All fluconazole-evolved derivative strains were found to have acquired mutations in the zinc-cluster transcription factor-encoding gene TAC1B and to show a corresponding increase in CDR1 expression relative to the parental clinical isolate, AR0387. Mutations in TAC1B were also identified in a set of 304 globally distributed C. auris clinical isolates representing each of the four major clades. Introduction of the most common mutation found among fluconazole-resistant clinical isolates of C. auris into fluconazole-susceptible isolate AR0387 was confirmed to increase fluconazole resistance by 8-fold, and the correction of the same mutation in a fluconazole-resistant isolate, AR0390, decreased fluconazole MIC by 16-fold. Taken together, these data demonstrate that C. auris can rapidly acquire resistance to fluconazole in vitro and that mutations in TAC1B significantly contribute to clinical fluconazole resistance.IMPORTANCECandida auris is an emerging multidrug-resistant pathogen of global concern, known to be responsible for outbreaks on six continents and to be commonly resistant to antifungals. While the vast majority of clinical C. auris isolates are highly resistant to fluconazole, an essential part of the available antifungal arsenal, very little is known about the mechanisms contributing to resistance. In this work, we show that mutations in the transcription factor TAC1B significantly contribute to clinical fluconazole resistance. These studies demonstrated that mutations in TAC1B can arise rapidly in vitro upon exposure to fluconazole and that a multitude of resistance-associated TAC1B mutations are present among the majority of fluconazole-resistant C. auris isolates from a global collection and appear specific to a subset of lineages or clades. Thus, identification of this novel genetic determinant of resistance significantly adds to the understanding of clinical antifungal resistance in C. auris.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Mutação , Fatores de Transcrição/genética
8.
mBio ; 11(2)2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209680

RESUMO

This research analyzed six Aspergillus fumigatus genes encoding putative efflux proteins for their roles as transporters. TheA. fumigatus genes abcA, abcC, abcF, abcG, abcH, and abcI were cloned into plasmids and overexpressed in a Saccharomyces cerevisiae strain in which the highly active endogenous ABC transporter gene PDR5 was deleted. The activity of each transporter was measured by efflux of rhodamine 6G and accumulation of alanine ß-naphthylamide. The transporters AbcA, AbcC, and AbcF had the strongest efflux activities of these compounds. All of the strains with plasmid-expressed transporters had more efflux activity than did the PDR5-deleted background strain. We performed broth microdilution drug susceptibility testing and agar spot assays using an array of compounds and antifungal drugs to determine the transporter specificity and drug susceptibility of the strains. The transporters AbcC and AbcF showed the broadest range of substrate specificity, while AbcG and AbcH had the narrowest range of substrates. Strains expressing the AbcA, AbcC, AbcF, or AbcI transporter were more resistant to fluconazole than was the PDR5-deleted background strain. Strains expressing AbcC and AbcF were additionally more resistant to clotrimazole, itraconazole, ketoconazole, and posaconazole than was the background strain. Finally, we analyzed the expression levels of the genes by reverse transcription-quantitative PCR (RT-qPCR) in triazole-susceptible and -resistant A. fumigatus clinical isolates. All of these transporters are expressed at a measurable level, and transporter expression varied significantly between strains, demonstrating the high degree of phenotypic variation, plasticity, and divergence of which this species is capable.IMPORTANCE One mechanism behind drug resistance is altered export out of the cell. This work is a multifaceted analysis of membrane efflux transporters in the human fungal pathogen A. fumigatus Bioinformatics evidence infers that there is a relatively large number of genes in A. fumigatus that encode ABC efflux transporters. However, very few of these transporters have been directly characterized and analyzed for their potential role in drug resistance.Our objective was to determine if these undercharacterized proteins function as efflux transporters and then to better define whether their efflux substrates include antifungal drugs used to treat fungal infections. We chose six A. fumigatus potential plasma membrane ABC transporter genes for analysis and found that all six genes produced functional transporter proteins. We used two fungal systems to look for correlations between transporter function and drug resistance. These transporters have the potential to produce drug-resistant phenotypes in A. fumigatus Continued characterization of these and other transporters may assist in the development of efflux inhibitor drugs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aspergillus fumigatus/genética , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Deleção de Genes , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
9.
J Infect Dis ; 221(9): 1554-1563, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-31805183

RESUMO

Candida albicans, a ubiquitous commensal fungus that colonizes human mucosal tissues and skin, can become pathogenic, clinically manifesting most commonly as oropharyngeal candidiasis and vulvovaginal candidiasis (VVC). Studies in mice and humans convincingly show that T-helper 17 (Th17)/interleukin 17 (IL-17)-driven immunity is essential to control oral and dermal candidiasis. However, the role of the IL-17 pathway during VVC remains controversial, with conflicting reports from human data and mouse models. Like others, we observed induction of a strong IL-17-related gene signature in the vagina during estrogen-dependent murine VVC. As estrogen increases susceptibility to vaginal colonization and resulting immunopathology, we asked whether estrogen use in the standard VVC model masks a role for the Th17/IL-17 axis. We demonstrate that mice lacking IL-17RA, Act1, or interleukin 22 showed no evidence for altered VVC susceptibility or immunopathology, regardless of estrogen administration. Hence, these data support the emerging consensus that Th17/IL-17 axis signaling is dispensable for the immunopathogenesis of VVC.


Assuntos
Candidíase Vulvovaginal/imunologia , Estrogênios/administração & dosagem , Interleucina-17/imunologia , Receptores de Interleucina-17/imunologia , Receptores de Interleucina/imunologia , Animais , Candida albicans , Candidíase Bucal/imunologia , Candidíase Bucal/patologia , Candidíase Vulvovaginal/patologia , Modelos Animais de Doenças , Estrogênios/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/patologia , Transdução de Sinais/imunologia , Vagina/microbiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-30718246

RESUMO

Candida auris has rapidly emerged as a health care-associated and multidrug-resistant pathogen of global concern. In this work, we examined the relative expression of the four C. auris genes with the highest degree of homology to Candida albicansCDR1 and MDR1 among three triazole-resistant clinical isolates as compared to the triazole-susceptible genome reference clinical isolate. We subsequently utilized a novel Cas9-mediated system for genetic manipulations to delete C. aurisCDR1 and MDR1 in both a triazole-resistant clinical isolate and a susceptible reference strain and observed that MICs for all clinically available triazoles decreased as much as 128-fold in the CDR1 deletion strains. The findings of this work reveal for the first time that C. aurisCDR1 and MDR1 are more highly expressed among triazole-resistant clinical isolates of C. auris and that the overexpression of CDR1 is a significant contributor to clinical triazole resistance.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Proteína 9 Associada à CRISPR/genética , Candida/isolamento & purificação , Candidíase/microbiologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fluconazol/farmacologia , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Microrganismos Geneticamente Modificados , Triazóis/farmacologia
11.
Infect Immun ; 86(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30249743

RESUMO

The human fungal pathogen Candida albicans is the major etiological agent of vulvovaginal candidiasis (VVC). Despite this fact, other non-albicans Candida (NAC) species have frequently been reported, as well. Despite their presence in the vaginal environment, little is known about their capacities to elicit immune responses classically associated with C. albicans-mediated immunopathology, including neutrophil recruitment and proinflammatory cytokine signaling. Therefore, using a combination of in vitro and in vivo approaches, we undertook a comparative analysis to determine whether a representative panel of NAC species could colonize, induce immunopathological markers, or cause damage at the vaginal mucosa. Using a murine model of VVC, C. albicans was found to induce robust immunopathology (neutrophils and interleukin 1ß [IL-1ß]) and elicit mucosal damage. However, all the NAC species tested (including C. dubliniensis, C. tropicalis, C. parapsilosis, C. krusei, C. glabrata, and C. auris) induced significantly less damage and neutrophil recruitment than C. albicans, despite achieving similar early colonization levels. These results largely correlated with a notable lack of ability by the NAC species (including C. dubliniensis and C. tropicalis) to form hyphae both in vitro and in vivo Furthermore, both C. dubliniensis and C. tropicalis induced significantly less expression of the ECE1 gene encoding candidalysin, a key fungal virulence determinant driving VVC immunopathology. In order to determine the relative capacities of these species to elicit inflammasome-dependent IL-1ß release, both wild-type and NLRP3-/- THP-1 cells were challenged in vitro While most species tested elicited only modest amounts of IL-1ß, challenge with C. albicans led to significantly elevated levels that were largely NLRP3 dependent. Collectively, our findings demonstrate that although NAC species are increasingly reported as causative agents of VVC, C. albicans appears to be exceedingly vaginopathogenic, exhibiting robust immunopathology, hypha formation, and candidalysin expression. Thus, this study provides mechanistic insight into why C. albicans is overwhelmingly the major pathogen reported during VVC.


Assuntos
Candida/patogenicidade , Candidíase Vulvovaginal/microbiologia , Vagina/imunologia , Vagina/patologia , Animais , Candida glabrata/patogenicidade , Candida tropicalis/patogenicidade , Candidíase Vulvovaginal/imunologia , Candidíase Vulvovaginal/patologia , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Inflamassomos , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mucosa/imunologia , Mucosa/microbiologia , Mucosa/patologia , Infiltração de Neutrófilos , Transdução de Sinais/imunologia , Vagina/microbiologia , Fatores de Virulência
12.
mBio ; 9(3)2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789366

RESUMO

Inactivation of sterol Δ5,6-desaturase (Erg3p) in the prevalent fungal pathogen Candida albicans is one of several mechanisms that can confer resistance to the azole antifungal drugs. However, loss of Erg3p activity is also associated with deficiencies in stress tolerance, invasive hyphal growth, and attenuated virulence in a mouse model of disseminated infection. This may explain why relatively few erg3-deficient strains have been reported among azole-resistant clinical isolates. In this study, we examined the consequences of Erg3p inactivation upon C. albicans pathogenicity and azole susceptibility in mouse models of mucosal and disseminated infection. While a C. albicanserg3Δ/Δ mutant was unable to cause lethality in the disseminated model, it induced pathology in a mouse model of vaginal infection. The erg3Δ/Δ mutant was also more resistant to fluconazole treatment than the wild type in both models of infection. Thus, complete loss of Erg3p activity confers azole resistance but also niche-specific virulence deficiencies. Serendipitously, we discovered that loss of azole-inducible ERG3 transcription (rather than complete inactivation) is sufficient to confer in vitro fluconazole resistance, without compromising C. albicans stress tolerance, hyphal growth, or pathogenicity in either mouse model. It is also sufficient to confer fluconazole resistance in the mouse vaginal model, but not in the disseminated model of infection, and thus confers niche-specific azole resistance without compromising C. albicans pathogenicity at either site. Collectively, these results establish that modulating Erg3p expression or activity can have niche-specific consequences on both C. albicans pathogenicity and azole resistance.IMPORTANCE While conferring resistance to the azole antifungals in vitro, loss of sterol Δ5,6-desaturase (Erg3p) activity has also been shown to reduce C. albicans pathogenicity. Accordingly, it has been presumed that this mechanism may not be significant in the clinical setting. The results presented here challenge this assumption, revealing a more complex relationship between Erg3p activity, azole resistance, C. albicans pathogenicity, and the specific site of infection. Most importantly, we have shown that even modest changes in ERG3 transcription are sufficient to confer azole resistance without compromising C. albicans fitness or pathogenicity. Given that previous efforts to assess the importance of ERG3 as a determinant of clinical azole resistance have focused almost exclusively on detecting null mutants, its role may have been grossly underestimated. On the basis of our results, a more thorough investigation of the contribution of the ERG3 gene to azole resistance in the clinical setting is warranted.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida albicans/patogenicidade , Candidíase/microbiologia , Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Oxirredutases/metabolismo , Transativadores/metabolismo , Animais , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Candida albicans/genética , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Oxirredutases/genética , Transativadores/genética , Virulência/efeitos dos fármacos
13.
Infect Immun ; 86(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29109176

RESUMO

Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1ß, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Mucosa/microbiologia , Animais , Candidíase Vulvovaginal/imunologia , Candidíase Vulvovaginal/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Proteínas Fúngicas/farmacologia , Humanos , Camundongos , Mucosa/patologia , Infiltração de Neutrófilos/imunologia , Transdução de Sinais , Vagina/imunologia , Vagina/metabolismo , Vagina/microbiologia , Fatores de Virulência
14.
Infect Immun ; 85(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760935

RESUMO

The secreted aspartyl proteinases of Candida albicans have long been implicated in virulence at the mucosal surface, including contributions to colonization and immunopathogenesis during vulvovaginal candidiasis. In an effort to disentangle hypha-associated virulence factor regulation from morphological transition, the purpose of this study was to determine if overexpression of SAP2 or SAP5 in an efg1Δ/Δ cph1Δ/Δ mutant could restore the capacity to cause immunopathology during murine vaginitis to this avirulent hypofilamentous strain. Two similar yet distinct genetic approaches were used to construct expression vectors to achieve SAP overexpression, and both genetic and functional assays confirmed elevated SAP activity in transformed strains. Similar to previous findings, intravaginal challenge of C57BL/6 mice with hypha-defective strains attained high levels of mucosal colonization but failed to induce robust vaginal immunopathology (neutrophil recruitment, interleukin-1ß [IL-1ß] secretion, and lactate dehydrogenase release) compared to that with the hypha-competent control. Moreover, constitutive expression of SAP2 or SAP5 in two distinct sets of such strains did not elicit immunopathological markers at levels above those observed during challenge with isogenic empty vector controls. Therefore, these results suggest that the physiological contributions of SAPs to vaginal immunopathology require hypha formation, other hypha-associated factors, or genetic interaction with EFG1 and/or CPH1 to cause symptomatic infection. Additionally, the outlined expression strategy and strain sets will be useful for decoupling other downstream morphogenetic factors from hyphal growth.

15.
Artigo em Inglês | MEDLINE | ID: mdl-28630186

RESUMO

Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2 Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candida parapsilosis/genética , Equinocandinas/farmacologia , Oxirredutases/genética , Azóis/metabolismo , Candida parapsilosis/isolamento & purificação , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Farmacorresistência Fúngica Múltipla/genética , Equinocandinas/metabolismo , Ergosterol/biossíntese , Ergosterol/genética , Fungemia/tratamento farmacológico , Fungemia/microbiologia , Fungemia/prevenção & controle , Dosagem de Genes/genética , Genoma Fúngico/genética , Humanos , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único/genética
16.
Antimicrob Agents Chemother ; 60(10): 6060-6, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480868

RESUMO

The RTA3 gene, coding for a member of the Rta1p-like lipid-translocating exporter family, is coordinately upregulated with the ATP-binding cassette transporter genes CDR1 and CDR2 in azole-resistant clinical isolates of Candida albicans that carry activating mutations in the transcription factor Tac1p. We show here that deleting RTA3 in an azole-resistant clinical isolate carrying a Tac1p-activating mutation lowered fluconazole resistance by 2-fold, while overexpressing RTA3 in an azole-susceptible clinical isolate resulted in enhanced fluconazole tolerance associated with trailing growth in a liquid microtiter plate assay. We also demonstrate that an Rta3p-green fluorescent protein (GFP) fusion protein localizes predominantly to the plasma membrane, consistent with a putative function for Rta3p as a lipid translocase.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Transferência de Fosfolipídeos/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Proteínas de Transferência de Fosfolipídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Bacteriana
17.
Front Microbiol ; 7: 2173, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28127295

RESUMO

Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species.

18.
Antimicrob Agents Chemother ; 59(10): 5942-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169412

RESUMO

While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Candida/genética , Farmacorresistência Fúngica/genética , Regulação Fúngica da Expressão Gênica , Esteróis/biossíntese , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida/isolamento & purificação , Candida/metabolismo , Candidíase/microbiologia , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo , Análise de Sequência de DNA , Esterol 14-Desmetilase/genética , Esterol 14-Desmetilase/metabolismo , Esteróis/agonistas , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
19.
Antimicrob Agents Chemother ; 58(11): 6807-18, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182640

RESUMO

Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process. From a collection of C. albicans strains disrupted for genes encoding TFs (O. R. Homann, J. Dea, S. M. Noble, and A. D. Johnson, PLoS Genet. 5:e1000783, 2009, http://dx.doi.org/10.1371/journal.pgen.1000783), four strains exhibited marked reductions in minimum fungicidal concentration (MFCs) in both RPMI and yeast extract-peptone-dextrose (YPD) media. One of these genes, UPC2, was previously characterized with regard to its role in azole susceptibility. Of mutants representing the three remaining TF genes of interest, one (CAS5) was unable to recover from fluconazole exposure at concentrations as low as 2 µg/ml after 72 h in YPD medium. This mutant also showed reduced susceptibility and a clear zone of inhibition by Etest, was unable to grow on solid medium containing 10 µg/ml fluconazole, and exhibited increased susceptibility by time-kill analysis. CAS5 disruption in highly azole-resistant clinical isolates exhibiting multiple resistance mechanisms did not alter susceptibility. However, CAS5 disruption in strains with specific resistance mutations resulted in moderate reductions in MICs and MFCs. Genome-wide transcriptional analysis was performed in the presence of fluconazole and was consistent with the suggested role of CAS5 in cell wall organization while also suggesting a role in iron transport and homeostasis. These findings suggest that Cas5 regulates a transcriptional network that influences the response of C. albicans to fluconazole. Further delineation of this transcriptional network may identify targets for potential cotherapeutic strategies to enhance the activity of the azole class of antifungals.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fluconazol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Parede Celular/genética , Parede Celular/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Redes Reguladoras de Genes/genética , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Fatores de Transcrição/genética
20.
Antimicrob Agents Chemother ; 58(8): 4543-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24867980

RESUMO

Candida glabrata, the second most common cause of Candida infections, is associated with high rates of mortality and often exhibits resistance to the azole class of antifungal agents. Upc2 and Ecm22 in Saccharomyces cerevisiae and Upc2 in Candida albicans are the transcriptional regulators of ERG11, the gene encoding the target of azoles in the ergosterol biosynthesis pathway. Recently two homologs for these transcription factors, UPC2A and UPC2B, were identified in C. glabrata. One of these, UPC2A, was shown to influence azole susceptibility. We hypothesized that due to the global role for Upc2 in sterol biosynthesis in S. cerevisiae and C. albicans, disruption of UPC2A would enhance the activity of fluconazole in both azole-susceptible dose-dependent (SDD) and -resistant C. glabrata clinical isolates. To test this hypothesis, we constructed mutants with disruptions in UPC2A and UPC2B alone and in combination in a matched pair of clinical azole-SDD and -resistant isolates. Disruption of UPC2A in both the SDD and resistant isolates resulted in increased susceptibility to sterol biosynthesis inhibitors, including a reduction in fluconazole MIC and minimum fungicidal concentration, enhanced azole activity by time-kill analysis, a decrease in ergosterol content, and downregulation of baseline and inducible expression of several sterol biosynthesis genes. Our results indicate that Upc2A is a key regulator of ergosterol biosynthesis and is essential for resistance to sterol biosynthesis inhibitors in C. glabrata. Therefore, the UPC2A pathway may represent a potential cotherapeutic target for enhancing azole activity against this organism.


Assuntos
Antifúngicos/farmacologia , Azóis/farmacologia , Candida glabrata/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ergosterol/biossíntese , Fluconazol/farmacologia , Testes de Sensibilidade Microbiana , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transativadores/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA