Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biomater Sci ; 11(9): 3335-3353, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36960608

RESUMO

Lipopolyplexes (LPDs) are of considerable interest for use as gene delivery vehicles. Here LPDs have been prepared from cationic vesicles (composed of a 1 : 1 molar ratio of DOTMA with the neutral helper lipid, DOPE), singly branched cationic peptides and plasmid DNA. All peptides contained a linker sequence (cleaved by endosomal furin) attached to a targeting sequence selected to bind human airway epithelial cells and mediate gene delivery. The current study investigates the effects of novel Arg-containing cationic peptide sequences on the biophysical and transfection properties of LPDs. Mixed His/Arg cationic peptides were of particular interest, as these sequences have not been previously used in LPD formulations. Lengthening the number of cationic residues in a homopolymer from 6 to 12 in each branch reduced transfection using LPDs, most likely due to increased DNA compaction hindering the release of pDNA within the target cell. Furthermore, LPDs containing mixed Arg-containing peptides, particularly an alternating Arg/His sequence exhibited an increase in transfection, probably because of their optimal ability to complex and subsequently release pDNA. To confer stability in serum, LPDs were prepared in 0.12 M sodium chloride solution (as opposed to the more commonly used water) yielding multilamellar LPDs with very high levels of size reproducibility and DNA protection, especially when compared to the (unilamellar) LPDs formed in water. Significantly for the clinical applications of the LPDs, those prepared in the presence of sodium chloride retained high levels of transfection in the presence of media supplemented with fetal bovine serum. This work therefore represents a significant advance for the optimisation of LPD formulation for gene delivery, under physiologically relevant conditions, in vivo.


Assuntos
Peptídeos , Cloreto de Sódio , Humanos , Reprodutibilidade dos Testes , Transfecção , Peptídeos/química , DNA/química , Plasmídeos/genética , Lipossomos/química
2.
Nanoscale ; 14(14): 5392-5403, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319029

RESUMO

Surfactants are used in a wide range of chemical and biological applications, and for pharmaceutical purposes are frequently employed to enhance the solubility of poorly water soluble drugs. In this study, all-atom molecular dynamics (MD) simulations and small-angle neutron scattering (SANS) experiments have been used to investigate the drug solubilisation capabilities of the micelles that result from 10 wt% aqueous solutions of the non-ionic surfactant, Triton X-100 (TX-100). Specifically, we have investigated the solubilisation of saturation amounts of the sodium salts of two nonsteroidal anti-inflammatory drugs: ibuprofen and indomethacin. We find that the ibuprofen-loaded micelles are more non-spherical than the indomethacin-loaded micelles which are in turn even more non-spherical than the TX-100 micelles that form in the absence of any drug. Our simulations show that the TX-100 micelles are able to solubilise twice as many indomethacin molecules as ibuprofen molecules, and the indomethacin molecules form larger aggregates in the core of the micelle than ibuprofen. These large indomethacin aggregates result in the destabilisation of the TX-100 micelle, which leads to an increase in the amount of water inside of the core of the micelle. These combined effects cause the eventual division of the indomethacin-loaded micelle into two daughter micelles. These results provide a mechanistic description of how drug interactions can affect the stability of the resulting nanoparticles.


Assuntos
Ibuprofeno , Micelas , Ibuprofeno/química , Indometacina , Octoxinol , Tensoativos/química , Água/química
3.
Biochim Biophys Acta Biomembr ; 1864(6): 183886, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143742

RESUMO

The stratum corneum's lipid matrix is a critical for the skin's barrier function and is primarily composed of ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The lipids form a long periodicity phase (LPP), a unique trilayer unit cell structure. An enzyme driven pathway is implemented to synthesize these key lipids. If these enzymes are down- or upregulated as in inflammatory diseases, the final lipid composition is affected often altering the barrier function. In this study, we mimicked down regulation of enzymes involved in the synthesis of the sphingosine and CER amide bond. In a LPP lipid model, we substituted CER N-(tetracosanoyl)-sphingosine (CER NS) with either i) FFA C24 and free sphingosine, to simulate the loss of the CER amide bond, or ii) with FFA C24 and C18 to simulate the loss of the sphingosine headgroup. Our study shows the lipids in the LPP would not phase separate until at least 25% of the CER NS is substituted keeping the lateral packing and conformational ordering unaltered. Neutron diffraction studies showed that free sphingosine chains localized at the outer layers of the unit cell, while the remaining CER NS head group was concentrated in the inner headgroup layers. However, when FFA C18 was inserted, CER NS was dispersed throughout the LPP, resulting in an even distribution between the inner and outer water layers. The presented results highlight the importance of the CER NS headgroup structure and its interaction in combination with the carbon chain invariability for optimal lipid arrangement.


Assuntos
Ceramidas , Esfingosina , Ceramidas/química , Ácidos Graxos não Esterificados/análise , Ácidos Graxos não Esterificados/química , Difração de Nêutrons , Pele/química
4.
Int J Pharm ; 604: 120715, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048927

RESUMO

Lactose is present as an excipient in nearly half of all solid medicines. Despite the assumption of chemical stability, in aqueous solution, the chiral composition of lactose is prone to change. It is not known whether such epimerisation could also occur as solid crystalline α-lactose undergoes thermal desorption of its hydrated water. Thus, the aim of this study was to investigate the anomeric composition of lactose powders after heating in a differential scanning calorimeter. During thermal analysis, the heating cycles were interrupted to allow anomer-composition analysis by NMR. The onset for monohydrate desorption occurred at 143.8 ± 0.3 °C. Post water-loss, at 160 °C for example, α-lactose suffered partial conversion (11.6 ± 0.9%) to the ß-anomer. When held at 160 °C for 60 min this increased to 29.7 ± 0.8% ß-anomer (p < 0.05). This process of epimerisation was found to be close to zero-order with a rate constant of 0.28% per min-1. Optical microscopy indicated that the solid-state was maintained throughout thermal desorption and up to the onset of melting at 214.2 ± 0.9 °C. Only epimerisation was observed, with no additional chemical degradation detected by NMR. Similar results were observed when heating α-lactose to 190 °C, which resulted in a conversion of 29.1 ± 0.7% to ß-lactose. Thus, the exothermic peak observed after monohydrate loss, which has often been attributed to re-crystallisation, comprises a contribution from epimerisation. No epimerisation or hydrate loss was observed for ß-lactose powders when heated. In summary, it has been shown unequivocally for the first time that hydrate desorption (dehydration) leads to solid-state epimerisation in α-lactose powders.


Assuntos
Desidratação , Lactose , Varredura Diferencial de Calorimetria , Cristalização , Excipientes , Humanos , Pós
5.
J Colloid Interface Sci ; 597: 278-288, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33872884

RESUMO

Liquid lipid nanoparticles (LLN) are oil-in-water nanoemulsions of great interest in the delivery of hydrophobic drug molecules. They consist of a surfactant shell and a liquid lipid core. The small size of LLNs makes them difficult to study, yet a detailed understanding of their internal structure is vital in developing stable drug delivery vehicles (DDVs). Here, we implement machine learning techniques alongside small angle neutron scattering experiments and molecular dynamics simulations to provide critical insight into the conformations and distributions of the lipid and surfactant throughout the LLN. We simulate the assembly of a single LLN composed of the lipid, triolein (GTO), and the surfactant, Brij O10. Our work shows that the addition of surfactant is pivotal in the formation of a disordered lipid core; the even coverage of Brij O10 across the LLN shields the GTO from water and so the lipids adopt conformations that reduce crystallisation. We demonstrate the superior ability of unsupervised artificial neural networks in characterising the internal structure of DDVs, when compared to more conventional geometric methods. We have identified, clustered, classified and averaged the dominant conformations of lipid and surfactant molecules within the LLN, providing a multi-scale picture of the internal structure of LLNs.

6.
Small ; 17(6): e2004761, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33470509

RESUMO

Self-assembled, lipid-based micelles, such as those formed by the short-chain phosphocholine, dihexanoylphosphatidylcholine (2C6PC), are degraded by the pancreatic enzyme, phospholipase A2 (PLA2). Degradation yields 1-hexanoyl-lysophosphocholine (C6LYSO) and hexanoic acid (C6FA) products. However, little is known about the behavior of these products during and after the degradation of 2C6PC. In this work, a combination of static and time-resolved small angle neutron scattering, as well as all-atom molecular dynamics simulations, is used to characterize the structure of 2C6PC micelles. In doing so a detailed understanding of the substrate and product aggregation behavior before, during and after degradation is gained. Consequently, the formation of mixed micelles containing 2C6PC, C6LYSO and C6FA is shown at every stage of the degradation process, as well as the formation of mixed C6LYSO/C6FA micelles after degradation is complete. The use of atomistic molecular dynamics has allowed us to characterize the structure of 2C6PC, 2C6PC/C6LYSO/C6FA, and C6LYSO/C6FA micelles throughout the degradation process, showing the localization of the different molecular species within the aggregates. In addition, the hydration of the 2C6PC, C6LYSO, and C6FA species both during micellization and as monomers in aqueous solution is documented to reveal the processes driving their micellization.


Assuntos
Micelas , Simulação de Dinâmica Molecular , Digestão , Espalhamento a Baixo Ângulo
7.
J Colloid Interface Sci ; 587: 597-612, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33239213

RESUMO

HYPOTHESIS: Biomimetic liquid crystalline systems are widely used in skin care cosmetics and topical pharmaceutical preparations. Our ability to rationally design such formulations, however, is hampered by our incomplete understanding of their structure on the nanoscale. EXPERIMENTS: Using polarized light microscopy and small-angle and wide-angle X-ray scattering, the molecular architecture and properties of a barrier formulation prepared from distearoylphosphatidylcholine mixed with long chain fatty acid and alcohols, with and without antimicrobial pentanediols are directly probed. The nature and composition of the phases identified are determined through small-angle neutron scattering studies using chain-deuterated components, and the detailed structure and dynamics of the gel network lamellae are determined through molecular dynamics simulations. FINDINGS: The formulations show molecular ordering with long and short periodicity lamellar phases and there is little change in these structures caused by changes in temperature, drying, or the application of shear stress. The diol-free formulation is demonstrated to be self-preserving, and the added pentanediols are shown to distribute within the interlamellar regions where they limit availability of water for microbial growth. In culmination of these studies, we develop a more complete picture of these complex biomimetic preparations, and thereby enable their structure-based design.


Assuntos
Biomimética , Cristais Líquidos , Ácidos Graxos , Espalhamento a Baixo Ângulo
8.
Adv Ther (Weinh) ; 3(12): 2000153, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33043128

RESUMO

Ion-pairing a lifesaving drug such as theophylline with a targeting moiety could have a significant impact on medical emergencies such as status asthmaticus or COVID-19 induced pneumomediastinum. However, to achieve rapid drug targeting in vivo the ion-pair must be protected against breakdown before the entry into the target tissue. This study aims to investigate if inserting theophylline, when ion-paired to the polyamine transporter substrate spermine, into a cyclodextrin (CD), to form a triplex, could direct the bronchodilator to the lungs selectively after intravenous administration. NMR demonstrates that upon the formation of the triplex spermine protruded from the CD cavity and this results in energy-dependent uptake in A549 cells (1.8-fold enhancement), which persists for more than 20 min. In vivo, the triplex produces a 2.4-fold and 2.2-fold increase in theophylline in the lungs 20 min after injection in rats and mice, respectively (p < 0.05). The lung targeting is selective with no increase in uptake into the brain or the heart where the side-effects of theophylline are treatment-limiting. Selectively doubling the concentration of theophylline in the lungs could improve the benefit-risk ratio of this narrow therapeutic index medicine, which continues to be important in critical care.

9.
Pharmaceutics ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932858

RESUMO

It is well-established that oil-in-water creams can be stabilised through the formation of lamellar liquid crystal structures in the continuous phase, achieved by adding (emulsifier) mixtures comprising surfactant(s) combined (of necessity) with one or more co-surfactants. There is little molecular-level understanding, however, of how the microstructure of a cream is modulated by changes in co-surfactant and of the ramifications of such changes on cream properties. We investigate here the molecular architectures of oil-free, ternary formulations of water and emulsifiers comprising sodium dodecyl sulfate and one or both of the co-surfactants hexadecanol and octadecanol, using microscopy, small-angle and wide-angle X-ray scattering and small-angle neutron scattering. We then deploy these techniques to determine how the structures of the systems change when liquid paraffin oil is added to convert them to creams, and establish how the structure, rheology, and stability of the creams is modified by changing the co-surfactant. The ternary systems and their corresponding creams are shown to contain co-surfactant lamellae that are subtly different and exhibit different thermotropic behaviours. The lamellae within the creams and the layers surrounding their oil droplets are shown to vary with co-surfactant chain length. Those containing a single fatty alcohol co-surfactant are found to contain crystallites, and by comparison with the cream containing both alcohols suffer adverse changes in their rheology and stability.

10.
Langmuir ; 36(34): 10270-10278, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816488

RESUMO

Understanding the structure of the stratum corneum (SC) is essential to understand the skin barrier process. The long periodicity phase (LPP) is a unique trilayer lamellar structure located in the SC. Adjustments in the composition of the lipid matrix, as in many skin abnormalities, can have severe effects on the lipid organization and barrier function. Although the location of individual lipid subclasses has been identified, the lipid conformation at these locations remains uncertain. Contrast variation experiments via small-angle neutron diffraction were used to investigate the conformation of ceramide (CER) N-(tetracosanoyl)-sphingosine (NS) within both simplistic and porcine mimicking LPP models. To identify the lipid conformation of the twin chain CER NS, the chains were individually deuterated, and their scattering length profiles were calculated to identify their locations in the LPP unit cell. In the repeating trilayer unit of the LPP, the acyl chain of CER NS was located in the central and outer layers, while the sphingosine chain was located exclusively in the middle of the outer layers. Thus, for the CER NS with the acyl chain in the central layer, this demonstrates an extended conformation. Electron density distribution profiles identified that the lipid structure remains consistent regardless of the lipid's lateral packing phase, this may be partially due to the anchoring of the extended CER NS. The presented results provide a more detailed insight on the internal arrangement of the LPP lipids and how they are expected to be arranged in healthy skin.


Assuntos
Ceramidas , Esfingosina , Animais , Epiderme , Lipídeos , Pele , Suínos
11.
Int J Tryptophan Res ; 13: 1178646920919770, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547055

RESUMO

Single-nucleotide polymorphisms (SNPs) in and around the nicotinamide N-methyltransferase (NNMT) gene are associated with a range of cancers and other diseases and conditions. The data on these associations have been assembled, and their strength discussed. There is no evidence that the presence of either the major or minor base in any SNP affects the expression of nicotinamide N-methyltransferase. Nevertheless, suggestions have been put forward that some of these SNPs do affect NNMT expression and thus homocysteine metabolism. An alternative idea involving non-coding messenger RNAs (mRNAs) is suggested as a possible mechanism whereby health is influenced. It is postulated that these long, non-coding NNMT mRNAs may exert deleterious effects by interfering with the expression of other genes. Neither hypothesis, however, has experimental proof, and further work is necessary to elucidate NNMT genetic interactions.

12.
Artigo em Inglês | MEDLINE | ID: mdl-32361467

RESUMO

Antibody-Drug Conjugates (ADCs) consist of antibodies attached to cytotoxic small molecules or biological agents (i.e., payloads) through chemical linkers which may be cleavable or non-cleavable. The development of new ADCs is challenging, particularly the process of attaching the linker-payload construct to the antibody (i.e., the conjugation process). One of the major problems associated with conjugation is high hydrophobicity of the payload which can lead to low yields of the ADC through aggregation and/or lower than desired Drug-Antibody Ratios (DARs). We report here a UPLC-based assay that can be used to study the physicochemical properties of ADC payloads at an early stage of development, and to provide information on whether the hydrophilic-hydrophobic balance is suitable for conjugation or further physicochemical optimization is required. The assay is relatively simple to establish and should be of use to those working in the ADC area.


Assuntos
Bioensaio/métodos , Imunoconjugados/química , Espectrometria de Massas em Tandem/métodos , Calicheamicinas/química , Cromatografia Líquida de Alta Pressão , Doxorrubicina/química , Flurbiprofeno/química , Interações Hidrofóbicas e Hidrofílicas , Ibuprofeno/química , Irinotecano/química , Cetoprofeno/química , Maitansina/química , Conformação Molecular , Norfloxacino/química , Pentaclorofenol/química , Multimerização Proteica , Relação Estrutura-Atividade , Tolnaftato/química
13.
Mol Pharm ; 17(5): 1482-1490, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32101010

RESUMO

The rapid absorptive clearance of drugs delivered to the airways of the lungs means that many inhaled medicines have a short duration of action. The aim of this study was to investigate whether forming polar ion-pairs can modify drug absorption to slow down clearance from the airways. Salbutamol was used as a model drug and was formulated as ion-pairs in an aqueous solution with three negatively charged hydrophilic counterions: sulfate (molecular weight (MW) 142), gluconate (MW 218), and phytate (MW 736) (association constants of 1.57, 2.27, and 4.15, respectively) and one negatively charged hydrophobic counterion, octanoate (MW 166) (association constant, 2.56). All of the counterions were well tolerated by Calu-3 human bronchial epithelial cells when screened for toxicity in vitro using conditions that in silico simulations suggested maintain >80% drug-counterion association. The transport of salbutamol ion-pairs with higher polar surface area (PSA), i.e., the sulfate (PSA 52%), gluconate (PSA 50%), and phytate (PSA 79%) ion-pairs, was significantly lower compared to that of the drug alone (PSA 30%, p < 0.05). In contrast, the octanoate ion-pair (PSA 23%) did not significantly alter the salbutamol transport. The transport data for the gluconate ion-pair suggested that the pulmonary absorption half-life of the ion-paired drug would be double that of salbutamol base, and this illustrates the promise of increasing drug polarity using noncovalent complexation as an approach to control drug delivery to the airways of the lungs.


Assuntos
Albuterol/farmacocinética , Sistemas de Liberação de Medicamentos , Pulmão/metabolismo , Albuterol/química , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Infravermelho com Transformada de Fourier
14.
ChemMedChem ; 15(4): 385-390, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31805205

RESUMO

The recent outbreaks of Zika virus (ZIKV) infection worldwide make the discovery of novel antivirals against flaviviruses a research priority. This work describes the identification of novel inhibitors of ZIKV through a structure-based virtual screening approach using the ZIKV NS5-MTase. A novel series of molecules with a carbazoyl-aryl-urea structure has been discovered and a library of analogues has been synthesized. The new compounds inhibit ZIKV MTase with IC50 between 23-48 µM. In addition, carbazoyl-aryl-ureas also proved to inhibit ZIKV replication activity at micromolar concentration.


Assuntos
Antivirais/farmacologia , Descoberta de Drogas , Metiltransferases/antagonistas & inibidores , Ureia/farmacologia , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Metiltransferases/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química , Zika virus/enzimologia
15.
J Psychopharmacol ; 33(4): 466-471, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30696331

RESUMO

BACKGROUND: Minocycline has neurological anti-inflammatory properties and has been hypothesised to have antipsychotic effects. AIM: The aim of this study was to investigate, using routinely collected United Kingdom primary health care data, whether adolescent men and women are more or less likely to receive an urgent psychiatric referral during treatment for acne with minocycline compared with periods of non-treatment. METHOD: A self-controlled case series using United Kingdom Clinical Practice Research Datalink to calculate the incidence rate ratio of urgent psychiatric referrals for individuals, comparing periods during which minocycline was prescribed with unexposed periods, adjusted for age. RESULTS: We found 167 individuals who were at the time exposed to minocycline for a mean of 99 days and who received an urgent psychiatric referral. There was no difference in psychiatric referral risk during periods of exposure compared with periods of non-exposure: incidence rate ratio first 6 weeks of exposure 1.96, 95% confidence interval 0.82-4.71, p=0.132; incidence rate ratio remaining exposure period=1.97, 95% confidence interval 0.86-4.47, p=0.107. CONCLUSIONS: We found no evidence in support of a protective effect of minocycline against severe psychiatric symptoms in adolescence.


Assuntos
Acne Vulgar/tratamento farmacológico , Transtornos Mentais/epidemiologia , Minociclina/uso terapêutico , Encaminhamento e Consulta/estatística & dados numéricos , Adolescente , Antibacterianos/uso terapêutico , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Reino Unido/epidemiologia
16.
Org Biomol Chem ; 17(4): 945-957, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30629080

RESUMO

The formation of a novel trichain (TC) lipid was discovered when a cationic lipid possessing a terminal hydroxyl group and the helper lipid dioleoyl l-α-phosphatidylethanolamine (DOPE) were formulated as vesicles and stored. Importantly, the transfection efficacies of lipopolyplexes comprised of the TC lipid, a targeting peptide and DNA (LPDs) were found to be higher than when the corresponding dichain (DC) lipid was used. To explore this interesting discovery and determine if this concept can be more generally applied to improve gene delivery efficiencies, the design and synthesis of a series of novel TC cationic lipids and the corresponding DC lipids was undertaken. Transfection efficacies of the LPDs were found to be higher when using the TC lipids compared to the DC analogues, so experiments were carried out to investigate the reasons for this enhancement. Sizing experiments and transmission electron microscopy indicated that there were no major differences in the size and shape of the LPDs prepared using the TC and DC lipids, while circular dichroism spectroscopy showed that the presence of the third acyl chain did not influence the conformation of the DNA within the LPD. In contrast, small angle neutron scattering studies showed a considerable re-arrangement of lipid conformation upon formulation as LPDs, particularly of the TC lipids, while gel electrophoresis studies revealed that the use of a TC lipid in the LPD formulation resulted in enhanced DNA protection properties. Thus, the major enhancement in transfection performance of these novel TC lipids can be attributed to their ability to protect and subsequently release DNA. Importantly, the TC lipids described here highlight a valuable structural template for the generation of gene delivery vectors, based on the use of lipids with three hydrophobic chains.


Assuntos
Descoberta de Drogas , Técnicas de Transferência de Genes , Lipídeos/química , Dicroísmo Circular , Lipídeos/síntese química , Lipossomos/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
17.
Biomater Sci ; 7(1): 149-158, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30357152

RESUMO

Lipoplexes (LDs) have been prepared from DNA and positively charged vesicles composed of the helper lipid, dioleoyl l-α-phosphatidylethanolamine (DOPE) and either a dichain (DC) oxyethylated cationic lipid or their corresponding novel trichain (TC) counterpart. This is the first study using the TC lipids for the preparation of LDs and their application. Here the results of biophysical experiments characterising the LDs have been correlated with the in vitro transfection activity of the complexes. Photon correlation spectroscopy, zeta potential measurements and transmission electron microscopy studies indicated that, regardless of the presence of a third chain, there were little differences between the size and charge of the TC and DC containing LDs. Small angle neutron scattering studies established however that there was a significant conformational re-arrangement of the lipid bilayer when in the form of a LD complex as opposed to the parent vesicles. This re-arrangement was particularly noticeable in LDs containing TC lipids possessing a third chain of C12 or a longer chain. These results suggested that the presence of a third hydrophobic chain had a significant effect on lipid packing in the presence of DNA. Picogreen fluorescence and gel electrophoresis studies showed that the TC lipids containing a third acyl chain of at least C12 were most effective at complexing DNA while the TC lipids containing an octanoyl chain and the DC lipids were least effective. The transfection efficacies of the TC lipids in the form of LDs were found to be higher than for the DC analogues, particularly when the third acyl chain was an octanoyl or oleoyl moeity. Little or no increase in transfection efficiency was observed when the third chain was a methyl, acetyl or dodecanoyl group. The large enhancement in transfection performance of the TC lipids can be attributed to their ability to complex their DNA payload. These studies indicate that presence of a medium or long third acyl chain was especially beneficial for transfection.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Lipídeos/química , Lipossomos/química , Fosfatidiletanolaminas/química , Plasmídeos/administração & dosagem , Animais , Cátions/química , Linhagem Celular , DNA/genética , Plasmídeos/genética , Ratos , Transfecção/métodos
18.
Biochimie ; 154: 35-44, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071261

RESUMO

Mycosporine-like amino acids (MAAs) are UVR-absorbing metabolites typically produced by cyanobacteria and marine algae, but their properties are not limited to direct sun screening protection. Herein, we examine the antioxidant activities of porphyra-334 and shinorine and demonstrate that these MAAs are prospective activators of the cytoprotective Keap1-Nrf2 pathway. The ability of porphyra-334 and shinorine to bind with Keap1 was determined using fluorescence polarization (FP) and thermal shift assays to detect Keap1 receptor antagonism. Concomitantly, the ability of porphyra-334 and shinorine to dissociate Nrf2 from Keap1 was confirmed also by measurement of increased mRNA expression of Nrf2 targeted genes encoding oxidative stress defense proteins in primary skin fibroblasts prior and post UVR exposure. Surprisingly, enhanced transcriptional regulation was only promoted by MAAs in cells after exposure to UVR-induced oxidative stress. Furthermore, the in-vitro antioxidant activities of porphyra-334 and shinorine determined by the DPPH free-radical quenching assay were low in comparison to ascorbic acid. However, their antioxidant capacity determined by the ORAC assay to quench free radicals via hydrogen atom transfer is substantial. Hence, the dual nature of MAAs to provide antioxidant protection may offer a prospective chemotherapeutic strategy to prevent or retard the progression of multiple degenerative disorders of ageing.


Assuntos
Antioxidantes , Cicloexanonas , Cicloexilaminas , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicina/análogos & derivados , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Antioxidantes/química , Antioxidantes/farmacologia , Cicloexanonas/química , Cicloexanonas/farmacologia , Cicloexilaminas/química , Cicloexilaminas/farmacologia , Fibroblastos/citologia , Glicina/química , Glicina/farmacologia , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo
19.
Int J Biochem Cell Biol ; 98: 127-136, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29549048

RESUMO

The N-methylation of 4-phenylpyridine produces the neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+). We investigated the kinetics of 4-phenylpyridine N-methylation by nicotinamide N-methyltransferase (NNMT) and its effect upon 4-phenylpyridine toxicity in vitro. Human recombinant NNMT possessed 4-phenylpyridine N-methyltransferase activity, with a specific activity of 1.7 ±â€¯0.03 nmol MPP+ produced/h/mg NNMT. Although the Km for 4-phenylpyridine was similar to that reported for nicotinamide, its kcat of 9.3 × 10-5 ±â€¯2 × 10-5 s-1 and specificity constant, kcat/Km, of 0.8 ±â€¯0.8 s-1 M-1 were less than 0.15% of the respective values for nicotinamide, demonstrating that 4-phenylpyridine is a poor substrate for NNMT. At low (<2.5 mM) substrate concentration, 4-phenylpyridine N-methylation was competitively inhibited by dimethylsulphoxide, with a Ki of 34 ±â€¯8 mM. At high (>2.5 mM) substrate concentration, enzyme activity followed substrate inhibition kinetics, with a Ki of 4 ±â€¯1 mM. In silico molecular docking suggested that 4-phenylpyridine binds to the active site of NNMT in two non-redundant poses, one a substrate binding mode and the other an inhibitory mode. Finally, the expression of NNMT in the SH-SY5Y cell-line had no effect cell death, viability, ATP content or mitochondrial membrane potential. These data demonstrate that 4-phenylpyridine N-methylation by NNMT is unlikely to serve as a source of MPP+. The possibility for competitive inhibition by dimethylsulphoxide should be considered in NNMT-based drug discovery studies. The potential for 4-phenylpyridine to bind to the active site in two binding orientations using the same active site residues is a novel mechanism of substrate inhibition.


Assuntos
Neuroblastoma/patologia , Nicotinamida N-Metiltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Piridinas/metabolismo , Apoptose , Sítios de Ligação , Ligação Competitiva , Domínio Catalítico , Proliferação de Células , Dimetil Sulfóxido/metabolismo , Humanos , Cinética , Potencial da Membrana Mitocondrial , Metilação , Simulação de Acoplamento Molecular , Neuroblastoma/metabolismo , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/química , Piridinas/química , Células Tumorais Cultivadas
20.
Mol Pharm ; 15(3): 861-870, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29307184

RESUMO

Certain xenobiotics, such as paraquat, are sequestered into the lungs from the systemic circulation by the polyamine transporter system (PTS). The aim of this study was to investigate whether ion-pairing a drug (theophylline) with a PTS substrate (spermine) provides a means of using this active transport mechanism to target drug delivery to the lungs. Fourier transform infrared spectroscopy showed that two of the amine groups of spermine interact with C-N7 and C6═O of theophylline, leaving two free amines to interact with the PTS. In A549 cells, which possess a functional PTS (spermidine Km and Vmax, 0.6 ± 0.3 µM and 1.8 ± 0.3 pmol·min-1 per 105 cells, respectively), uptake of the theophylline-spermine ion-pair was increased 1.8-fold compared to free theophylline at 37 °C, but not at 4 °C. In an isolated perfused rat lung model (IPL) a 3.6-fold increase in lung theophylline concentration was observed after vascular administration of the ion-pair compared to free theophylline. Theophylline was cleared from the IPL with similar kinetics irrespective of whether it was delivered as the free drug or an ion-pair, although lung levels remained elevated after washout following delivery as an ion-pair. In vitro simulation of the theophylline-spermine break down demonstrated that a drop in pH from 9.6 to 7.4, such as that undergone by the ion-pair in biological matrices, induces rapid and almost complete dissociation of the ion-paired species. However, infusion of the ion-pair formulations via the vasculature provides almost immediate delivery to the pulmonary capillary bed permitting PTS-mediated active sequestering of ion-paired theophylline into the lungs.


Assuntos
Broncodilatadores/administração & dosagem , Proteínas de Transporte de Cátions/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Pulmão/metabolismo , Teofilina/administração & dosagem , Células A549 , Animais , Broncodilatadores/farmacocinética , Humanos , Concentração de Íons de Hidrogênio , Íons/química , Masculino , Poliaminas/metabolismo , Ratos , Ratos Wistar , Espermina/química , Espermina/metabolismo , Teofilina/farmacocinética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...