Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171050, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38369139

RESUMO

This study aims to assess the effect of different urban configuration regarding the choice of wastewater management of the district with source separation systems. Understanding this link can guide researchers, and also urban actors, in order to choose the best source separation solution to implement in a specific urban configuration. For this purpose, an integrated modelling approach was used to model the district with different types of urban planning, the water resources recovery facility (WRRF) and create a life cycle inventory to carry out a life cycle assessment (LCA). Six different urban configurations were tested with three different source separation scenarios and compared with an advanced WRRF with high level of nutrients and organic matter recovery. This study concludes that urine source separation is beneficial compared to advanced WWRF for all the urban configurations. Sewer construction was identified as the main contributor to environmental impact for the low-density configuration (pavilions), limiting the benefits of source separation in this urban settlement. Blackwater separation with a decentralised treatment is only beneficial for high densely populated area. Treatment of blackwater and greywater for reuse, has greater impact than reference scenario, in all urban configurations, due to high energy consumption for greywater treatment. Future research should therefore explore technical solutions for limiting the energy consumption.

2.
Sci Total Environ ; 885: 163881, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142017

RESUMO

A comprehensive framework is proposed for Life Cycle Assessment (LCA) in the field of commercial aviation (passengers and cargo), capable to ensure transparency and comparability when evaluating the overall environmental performances of four emerging aviation systems, i.e., biofuels, electrofuels, electric, and hydrogen. The projected global revenue passenger kilometer (RPK) and is suggested as the functional unit for two timeframes representing near-term (2035) and long-term (2045), and for two segments, namely domestic and international. To solve the difficulty of comparing liquid fuels and electric aviation, the framework proposes a methodology to translate projected RPK into energy requirements for each of the studied sustainable aviation systems. Generic system boundaries are defined with their key activities for all four systems, with the biofuel system being sub-divided into two categories to distinguish whether it stems from residual or land-dependent biomass. The activities are grouped in seven categories: (i) conventional (fossil-based) kerosene activity, (ii) conversion processes from feedstock supply (to fuel or energy production for aircraft operation), (iii) counterfactual uses of constrained resources and displacement effects associated to co-products management, (iv) aircraft manufacture, (v) aircraft operation, (vi) additional infrastructure needed, and (vii) end-of-life management (aircraft and batteries). Considering applying regulations, the framework also includes a methodology to handle: (i) hybridization (the use of more than one source of energy/propulsion system to power an aircraft), (ii) the mass penalty affecting the number of carried passengers in some of the systems, and (iii) impacts stemming from non-CO2 tailpipe emissions - aspects that are currently neglected in most LCA studies. The proposed framework builds upon the most recent knowledge in the field; however, some choices are dependent on upcoming scientific advances concerning e.g., tailpipe emissions at high altitude and their environmental impacts, new aircraft configuration, etc., and are subject to significant uncertainties. Overall, this framework provides a guideline for LCA practitioners addressing new energy sources for future aviation.

3.
Sci Total Environ ; 846: 157331, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843325

RESUMO

In this study, the potential of carbon storage in soil combined with mitigation via bio-based products is investigated for the case of 100 years of hemp cultivation on carbon-vulnerable land (CV-lands) in France. The originality of this study lies in the coupling of soil organic carbon (SOC) simulations (over 100 years of hemp cultivation) with consequential life cycle assessment (LCA) to investigate the mitigation potential of different environmental impacts, and the coupling with dynamic LCA to investigate the long-term effects on global warming. When hemp stems (straw) are left on the ground, SOC increases of 25.8 t ha-1 are observed over 100 years. However, the greenhouse gas (GHG) emissions that result from diverting the initial land use to hemp cultivation cannot be compensated for and, therefore, this scenario cannot mitigate global warming or most other impacts. Two long-lasting product scenarios were studied: insulation boards in buildings and car panels, both involving the production of hemp concrete as co-product. Our study shows that, even though no additional long-term carbon sequestration in soil could be achieved, both scenarios ensured a long-term climate benefit well beyond 2100, mostly because of carbon sequestered in the hemp-based products but also as a result of avoided fossil-based products. Uncertainty analyses reveal that the yield is the most influential parameter, inducing significant uncertainties in all scenarios and most impact categories. According to the overall results obtained, the car panel scenario is the most promising pathway with the lowest environmental impacts and the highest potential for long-term global warming mitigation; this is in part due to the reduction of fuel consumption during the use phase.


Assuntos
Agricultura , Cannabis , Sequestro de Carbono , Agricultura/métodos , Biodiversidade , Carbono , Meio Ambiente , Aquecimento Global , Solo , Temperatura
4.
Sci Total Environ ; 812: 152574, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954162

RESUMO

Orange peel waste (OPW) is present in large quantities both locally and globally, which makes them feasible input into the circular bioeconomy. However, due to their antimicrobial and anti-nutritional activity, they are problematic biomass, and proper waste management is yet to be determined. This life cycle assessment (LCA) quantifies the environmental performance of biorefinery producing limonene, citric acid, and animal feed from OPW generated from juice factories. Only previously assessed sustainable technologies were considered (cold press, microwave extraction, solid-state fermentation). The life cycle inventories were refined by a scale-up procedure to reflect industrial production at i) 0.5 t, ii) 100 t, and iii) 1000 t of OPW weekly. The data were translated per functional unit of 1 tonne OPW. Three electricity mixes and both attributional (average) and consequential (marginal) inventories were compared. Results showed that the environmental performance, in particular for climate change, was essentially dependent upon the electricity input, with 4388 CO2 eq for current electricity mix, 2404 CO2 eq using renewable, and 594 CO2 eq using electricity from wind. Business-as-usual scenarios for OPW (incineration and animal feed) showed better performance in most scenarios, representing -150 CO2 eq (animal feed) and -135 CO2 eq (incineration) in the climate change. Lower impacts are reached due to avoided impacts of fossil fuel use and conventional feed cultivation. Renewable energy had better environmental performance than the current electricity mix, except for eutrophication, due to digestate spreading associated with biogas use, calling for mitigation action. Our results suggest that stopping the biorefinery processes immediately after the recovery of limonene via solvent-free microwave extraction process, with subsequent use of the dried OPW as animal feed, is the most environmentally performant option. This represents a feasible strategy for the circular bioeconomy and is in line with the updated food waste hierarchy.


Assuntos
Citrus sinensis , Eliminação de Resíduos , Gerenciamento de Resíduos , Ração Animal , Animais , Eletricidade , Estágios do Ciclo de Vida
5.
Water Res ; 199: 117156, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33989856

RESUMO

Researchers and industrials need decision-making tools to make informed decisions on environmental mitigation strategies and proceed with the overall ecodesign of processes. In this study, a tool that couples membrane filtration process modelling and life cycle analysis has been developed, for which material and energy flows are calculated for variable operating conditions and are the basis for environmental impact assessment. The resulting generic model has been applied to dead-end ultrafiltration of ground and surface waters for drinking water production with cellulose triacetate hollow fibers. Operating strategies have been investigated to mitigate environmental impacts of the two major hotspots (electricity and backwash cleaning chemical consumptions). Adjusting filtration cycle duration and filtration flux has shown to be a promising lever. The developed model is sufficiently flexible and modular for its adaptation to other membrane materials, filtration configurations (i.e. cross-flow) as well as to other applications.


Assuntos
Água Potável , Purificação da Água , Filtração , Membranas Artificiais , Ultrafiltração
6.
J Environ Manage ; 280: 111832, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360259

RESUMO

This study presents a critical overview of reported essential oil (EO) extractions from citrus peel wastes (CPW), including harmonized data on the various citrus species and cultivars. Harmonization is vital to enable sustainable management practices. The review only includes eco-efficient extraction techniques. In total, the review contains 66 quantified examples using i) mechanical cold press ii) thermal extraction with water or steam media iii) thermal microwave-assisted extraction iv) other innovative methods (such as ultrasound). The technologies were assessed for their potential use in cascading production to achieve economies of scope, particularly considering the use of extraction residues for subsequent fermentation to produce various products from energy carriers to enzymes. Two techniques were found insufficient for direct use in fermentation. Cold press extracts an inadequate amount of EO (average yield 2.85% DW) to ensure suitable fermentation, while solvent extraction contaminates the residues for its subsequent use. Extractions using water media, such as hydrodistillation and microwave-assisted hydrodistillation (average EO yield 2.87% DW), are feasible for the liquid-based fermentation processes, such as submerged fermentation. Steam extraction is feasible for any type of fermentation. Our review highlighted solvent-free microwave extraction (average EO yield 5.29% DW) as the most effective method, which provides a high yield in a short extraction time. We also uncovered and discussed several inconsistencies in existing yields and energy consumption published data.


Assuntos
Citrus , Óleos Voláteis , Fermentação , Micro-Ondas , Vapor
7.
Data Brief ; 33: 106363, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33102648

RESUMO

In the related research article, entitled "A generic process modeling ‒ LCA approach for UF membrane fabrication: Application to cellulose acetate membranes" [1], a generic model is described and used to obtain the list of material and energy flows as a function of operating conditions for ultrafiltration (UF) hollow fibers preparation by non-solvent induced phase separation. In this data article, equations of the model, a dataset of model parameters and modelled data are detailed. modeling equations are developed from material and energy balances for each unit operation (i.e. from polymer solution mixing to module conditioning) based on an industrial membrane fabrication process of UF cellulose acetate modules. These equations may be reused as such or adapted to other membrane materials and industrial practices. The dataset of model parameters relates to industrial on-site measurements and scientific literature for the existing cellulose-based module. The modelled data corresponds to a reference situation for which hollow fibers (inner and outer diameters equal to 0.93 mm and 1.67 mm, respectively) are fabricated from a polymer solution composition of 20 wt.% of cellulose triacetate, 78 wt.% N-methyl-2-pyrrolidone and 2 wt.% lithium chloride.

8.
Sci Total Environ ; 743: 140700, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758829

RESUMO

In life cycle assessment (LCA), temporal considerations are usually lost during the life cycle inventory calculation, resulting in an aggregated "snapshot" of potential impacts. Disregarding such temporal considerations has previously been underlined as an important source of uncertainty, but a growing number of approaches have been developed to tackle this issue. Nevertheless, their adoption by LCA practitioners is still uncommon, which raises concerns about the representativeness of current LCA results. Furthermore, a lack of consistency can be observed in the used terms for discussions on temporal considerations. The purpose of this review is thus to search for common ground and to identify the current implementation challenges while also proposing development pathways. This paper introduces a glossary of the most frequently used terms related to temporal considerations in LCA to build a common understanding of key concepts and to facilitate discussions. A review is also performed on current solutions for temporal considerations in different LCA phases (goal and scope definition, life cycle inventory analysis and life cycle impact assessment), analysing each temporal consideration for its relevant conceptual developments in LCA and its level of operationalisation. We then present a potential stepwise approach and development pathways to address the current challenges of implementation for dynamic LCA (DLCA). Three key focal areas for integrating temporal considerations within the LCA framework are discussed: i) define the temporal scope over which temporal distributions of emissions are occurring, ii) use calendar-specific information to model systems and associated impacts, and iii) select the appropriate level of temporal resolution to describe the variations of flows and characterisation factors. Addressing more temporal considerations within a DLCA framework is expected to reduce uncertainties and increase the representativeness of results, but possible trade-offs between additional data collection efforts and the increased value of results from DLCAs should be kept in mind.

9.
Sci Total Environ ; 624: 1250-1262, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29929238

RESUMO

Including the temporal dimension in the Life Cycle Assessment (LCA) method is a very recent research subject. A complete framework including dynamic Life Cycle Inventory (LCI) and dynamic Life Cycle Impact Assessment (LCIA) was proposed with the possibility to calculate temporal deployment of climate change and ecotoxicity/toxicity indicators. However, the influence of different temporal parameters involved in the new dynamic method was not still evaluated. In the new framework, LCI and LCIA results are obtained as discrete values in function of time (vectors and matrices). The objective of this study is to evaluate the influence of the temporal profile of the dynamic LCI and calculation time span (or time horizon in conventional LCA) on the final LCA results. Additionally, the influence of the time step used for the impact dynamic model resolution was analysed. The range of variation of the different time steps was from 0.5day to 1year. The graphical representation of the dynamic LCA results shown important features such as the period in time and the intensity of the worst or relevant impact values. The use of a fixed time horizon as in conventional LCA does not allow the proper consideration of essential information especially for time periods encompassing the life time of the studied system. Regarding the different time step sizes used for the dynamic LCI definition, they did not have important influence on the dynamic climate change results. At the contrary, the dynamic ecotoxicity and human toxicity impacts were strongly affected by this parameter. Similarly, the time step for impact dynamic model resolution had no influence on climate change calculation (step size up to 1year was supported), while the toxicity model resolution requires adaptive time step definition with maximum size of 0.5day.

10.
Water Res ; 126: 50-59, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28918078

RESUMO

Innovative treatment technologies and management methods are necessary to valorise the constituents of wastewater, in particular nutrients from urine (highly concentrated and can have significant impacts related to artificial fertilizer production). The FP7 project, ValuefromUrine, proposed a new two-step process (called VFU) based on struvite precipitation and microbial electrolysis cell (MEC) to recover ammonia, which is further transformed into ammonium sulphate. The environmental and economic impacts of its prospective implementation in the Netherlands were evaluated based on life cycle assessment (LCA) methodology and operational costs. In order to tackle the lack of stable data from the pilot plant and the complex effects on wastewater treatment plant (WWTP), process simulation was coupled with LCA and costs assessment using the Python programming language. Additionally, particular attention was given to the propagation and analysis of inputs uncertainties. Five scenarios of VFU implementation were compared to the conventional treatment of 1 m3 of wastewater. Inventory data were obtained from SUMO software for the WWTP operation. LCA was based on Brightway2 software (using ecoinvent database and ReCiPe method). The results, based on 500 iterations sampled from inputs distributions (foreground parameters, ecoinvent background data and market prices), showed a significant advantage of VFU technology, both at a small and decentralized scale and at a large and centralized scale (95% confidence intervals not including zero values). The benefits mainly concern the production of fertilizers, the decreased efforts at the WWTP, the water savings from toilets flushing, as well as the lower infrastructure volumes if the WWTP is redesigned (in case of significant reduction of nutrients load in wastewater). The modelling approach, which could be applied to other case studies, improves the representativeness and the interpretation of results (e.g. complex relationships, global sensitivity analysis) but requires additional efforts (computing and engineering knowledge, longer calculation time). Finally, the sustainability assessment should be refined in the future with the development of the technology at larger scale to update these preliminary conclusions before its commercialization.


Assuntos
Meio Ambiente , Urina/química , Eliminação de Resíduos Líquidos/economia , Eliminação de Resíduos Líquidos/métodos , Custos e Análise de Custo , Eletrólise/métodos , Fertilizantes , Países Baixos , Estudos Prospectivos , Esgotos/química , Estruvita/química , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/química , Águas Residuárias/economia
11.
Sci Total Environ ; 599-600: 806-819, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499229

RESUMO

Life Cycle Assessment (LCA) is the most widely used method for the environmental evaluation of an anthropogenic system and its capabilities no longer need to be proved. However, several limitations have been pointed out by LCA scholars, including the lack of a temporal dimension. The objective of this study is to develop a dynamic approach for calculating the time dependent impacts of human toxicity and ecotoxicity within LCA. A new framework is proposed, which includes dynamic inventory and dynamic impact assessment. This study focuses on the dynamic fate model for substances in the environment, combined with the USEtox® model for toxicity assessment. The method takes into account the noisy and random nature of substance emissions in function of time, as in the real world, and uses a robust solver for the dynamic fate model resolution. No characterization factors are calculated. Instead, a current toxicity is calculated as a function of time i.e. the damage produced per unit of time, together with a time dependent cumulated toxicity, i.e. the total damage produced from time zero to a given time horizon. The latter can be compared with the results obtained by the conventional USEtox® method: their results converge for a very large time horizon (theoretically at infinity). Organic substances are found to disappear relatively rapidly from the environmental compartments (in the time period in which the emissions occur) while inorganic substances (i.e. metals) tend to persist far beyond the emission period.

12.
Sci Total Environ ; 472: 608-19, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24317168

RESUMO

This paper reports the emergy-based evaluation (EME) of the ecological performance of four water treatment plants (WTPs) using three different approaches. The results obtained using the emergy calculation software SCALE (EMESCALE) are compared with those achieved through a conventional emergy evaluation procedure (EMECONV), as well as through the application of the Solar Energy Demand (SED) method. SCALE's results are based on a detailed representation of the chain of technological processes provided by the lifecycle inventory database ecoinvent®. They benefit from a higher level of details in the description of the technological network as compared to the ones calculated with a conventional EME and, unlike the SED results, are computed according to the emergy algebra rules. The analysis delves into the quantitative comparison of unit emergy values (UEVs) for individual technospheric inputs provided by each method, demonstrating the added value of SCALE to enhance reproducibility, accurateness and completeness of an EME. However, SCALE cannot presently include non-technospheric inputs in emergy accounting, like e.g. human labor and ecosystem services. Moreover, SCALE is limited by the approach used to build the dataset of UEVs for natural resources. Recommendations on the scope and accuracy of SCALE-based emergy accounting are suggested for further steps in software development, as well as preliminary quantitative methods to account for ecosystem services and human labor.


Assuntos
Software , Eliminação de Resíduos Líquidos/métodos , Conservação dos Recursos Naturais , Ecologia , Ecossistema , Monitoramento Ambiental/métodos
13.
J Hazard Mater ; 264: 236-45, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24295776

RESUMO

The leaching behaviour of a commercial fibre-cement sheet (FCS) product has been investigated. A static pH dependency test and a dynamic surface leaching test have been performed at lab scale. These tests allowed the development of a chemical-transport model capable to predict the release of major and trace elements over the entire pH range, in function of time. FCS exhibits a cement-type leaching behaviour with respect to the mineral species. Potentially hazardous species are released in significant quantities when compared to their total content. These are mainly heavy metals commonly encountered in cement matrixes and boron (probably added as biocide). Organic compounds considered as global dissolved carbon are released in significant concentrations, originating probably from the partial degradation of the organic fibres. The pesticide terbutryn (probably added during the preservative treatment of the organic fibres) was systematically identified in the leachates. The simulation of an upscaled runoff scenario allowed the evaluation of the cumulative release over long periods and the distribution of the released quantities in time, in function of the local exposure conditions. After 10 years of exposure the release reaches significant fractions of the species' total content - going from 4% for Cu to near 100% for B.


Assuntos
Materiais de Construção/análise , Substâncias Perigosas/análise , Modelos Químicos
14.
Sci Total Environ ; 472: 262-72, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24291626

RESUMO

Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Modelos Teóricos , Planeta Terra , Ecossistema
15.
Sci Total Environ ; 461-462: 645-54, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23764676

RESUMO

Numerical simulation of the leaching behaviour of treated wood is the most pertinent and less expensive method for the prediction of biocides' release in water. Few studies based on mechanistic leaching models have been carried out so far. In this work, a coupled chemistry-mass transport model is developed for simulating the leaching behaviour of inorganic (Cu, B) and organic (Tebuconazole) biocides from CBA-amine treated wood. The model is based on experimental investigations (lab-scale leaching tests coupled with chemical and structural analysis). It considers biocides' interactions with wood solid components and with extractives (literature confirmed reactions), as well as transport mechanisms (diffusion, convection) in different compartments. Simulation results helped at identifying the main fixation mechanisms, like (i) direct complexation of Cu by wood-phenolic and -carboxylic sites (and not via monoethanolamine; complex) on lignin and hemicellulose and strong dependence on extractives' nature, (ii) pH dependent binding of tebuconazole on polarized OH moieties on wood. The role of monoethanolamine is to provide a pore-solution pH of about 7.5, when copper solubility is found to be weakest. The capability of the developed model to simulate the chemical and transport behaviour is the main result of this study. Moreover, it proved that characterization leaching tests (pH dependency and dynamic tests), combined with appropriate analytical methods are useful experimental tools. Due to its flexibility for representing and simulating various leaching conditions, chemical-transport model developed could be used to further simulate the leaching behaviour of CBA treated wood at larger scales.


Assuntos
Desinfetantes/análise , Fixadores/química , Modelos Químicos , Triazóis/química , Madeira/química , Azóis/química , Boro/química , Simulação por Computador , Cobre/química , Concentração de Íons de Hidrogênio
16.
Sci Total Environ ; 444: 522-30, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23295179

RESUMO

Treated wood is frequently used for construction. However, there is a need to ensure that biocides used for the treatment are not a threat for people or environment. The paper focused on Pinus sylvestris treated with copper-boron-azole (CBA), containing tebuconazole as organic biocide and monoethanolamine (Mea). This study investigates chemical mechanisms of fixation and mobilisation involved in the leaching process of the used inorganic and organic biocides in CBA. A pH dependent leaching test was performed, followed by a set of complementary analysis methods in order to identify and quantify the species released from wood. The main findings of this study are: - Organic compounds are released from untreated and treated wood; the quantity of released total organic carbon, carboxylic and phenolic functions increasing with the pH. - Nitrogen containing compounds, i.e. mainly Mea and its reaction products with extractives, are released in important quantities from CBA treated wood, especially at low pH. - The release of copper is the result of competitive reactions: fixation via complexation reactions and complexation with extractives in the liquid phase. The specific pH dependency of Cu leaching is explained by the competition of ligands for protonation and complexation. - Tebuconazole is released to a lesser extent relative to its initial content. Its fixation on solid wood structure seems to be influenced by pH, suggesting interactions with \OH groups on wood. Boron release appears to be pH independent and very high. This confirms its weak fixation on wood and also no or weak interaction with the extractives.


Assuntos
Desinfetantes/análise , Madeira/química , Azóis/análise , Azóis/química , Boro/análise , Boro/química , Cobre/análise , Cobre/química , Desinfetantes/química , Concentração de Íons de Hidrogênio , Pinus , Triazóis/análise , Triazóis/química
17.
Sci Total Environ ; 443: 367-74, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23220131

RESUMO

To compare potable water production plants on the basis of the environmental impacts generated by the treatment, including water resource depletion, Life Cycle Assessment (LCA) methodology is often used as referential. A comparison based only on the environmental impacts can however be misleading. Criteria for drinkability are usually defined as thresholds and the actual water quality gain achieved by different treatment chains shall be considered in the assessment for a fair comparison. Otherwise, chains treating low quality water resources could be disadvantaged as compared to alternatives using higher quality water resource, also when the depletion of the raw resource is included in the impact assessment. In this study, a novel Cost-Performance (CP) indicator has been developed and tested for the case of two existing water treatment plants located in the Paris Region. CP is the ratio between the total environmental impact generated by the treatment (i.e. the LCA score, eventually monetarised) and the total quality gain from raw to treated water. For the test case, three life cycle impact assessment methods, ReCiPe, Stepwise and Eco-costs (the latter two including monetarisation) have been considered. The water quality gain is based on 8 relevant parameters measured before and after treatment. The parameters are further aggregated using the French water quality valuation system SEQ-Eau. Paired t-test is then used to calculate the confidence interval for the average quality gain which then determines the confidence interval of the CP. Independent t-test on the CPs of the two alternative plants allows checking if their performances can be distinguished. Although in the specific test case the comparison is not conclusive, due to the similarity between the water quality gains, realistic breakthrough values have been obtained, especially using ReCiPe. The meaningfulness of the monetarisation of the LCA results has been highlighted as well.

18.
J Hazard Mater ; 192(3): 1476-83, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21794983

RESUMO

The objective of this work is to develop a chemical model for explaining the leaching behaviour of inorganic biocides from treated wood. The standard leaching test XP CEN/TS14429 was applied to a commercial construction material made of treated Pinus sylvestris (Copper Boron Azole preservative). The experimental results were used for developing a chemical model under PHREEQC(®) (a geochemical software, with LLNL, MINTEQ data bases) by considering the released species detected in the eluates: main biocides Cu and B, other trace biocides (Cr and Zn), other elements like Ca, K, Cl, SO(4)(-2), dissolved organic matter (DOC). The model is based on chemical phenomena at liquid/solid interfaces (complexation, ion exchange and hydrolysis) and is satisfactory for the leaching behaviour representation. The simulation results confronted with the experiments confirmed the hypotheses of: (1) biocide fixation by surface complexation reactions with wood specific sites (carboxyl and phenol for Cu, Zn, Cr(III), aliphatic hydroxyl for B, ion exchange to a lesser extent) and (2) biocide mobilisation by extractives (DOC) coming from the wood. The maximum of Cu, Cr(III) and Zn fixation occurred at neutral pH (including the natural pH of wood), while B fixation was favoured at alkaline pH.


Assuntos
Desinfetantes/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água/química , Madeira/química , Adsorção , Azóis/química , Boro/química , Cálcio/química , Cobre/química , Concentração de Íons de Hidrogênio , Compostos Inorgânicos/química , Modelos Teóricos , Pinus , Software , Zinco/química
19.
J Hazard Mater ; 186(2-3): 1163-73, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21208742

RESUMO

The present work focuses on the reactivity of coal fly ash in aqueous solutions studied through geochemical modelling. The studied coal fly ashes originate from South African industrial sites. The adopted methodology is based on mineralogical analysis, laboratory leaching tests and geochemical modelling. A quantitative modelling approach is developed here in order to determine the quantities of different solid phases composing the coal fly ash. It employs a geochemical code (PHREEQC) and a numerical optimisation tool developed under MATLAB, by the intermediate of a coupling program. The experimental conditions are those of the laboratory leaching test, i.e. liquid/solid ratio of 10 L/kg and 48 h contact time. The simulation results compared with the experimental data demonstrate the feasibility of such approach, which is the scope of the present work. The perspective of the quantitative geochemical modelling is the waste reactivity prediction in different leaching conditions and time frames. This work is part of a largest research project initiated by Sasol and Eskom companies, the largest South African coal consumers, aiming to address the issue of waste management of coal combustion residues and the environmental impact assessment of coal ash disposal on land.


Assuntos
Carbono/análise , Carvão Mineral/análise , Material Particulado/análise , Cinza de Carvão , Simulação por Computador , Concentração de Íons de Hidrogênio , Resíduos Industriais/análise , Caulim , Cinética , Metais/análise , Modelos Químicos , Solubilidade , África do Sul , Gerenciamento de Resíduos , Difração de Raios X
20.
Sci Total Environ ; 407(5): 1613-30, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19118868

RESUMO

Recently, a demand regarding the assessment of release of dangerous substances from construction products was raised by European Commission which has issued the Mandate M/366 addressed to CEN. This action is in relation with the Essential Requirement No. 3 "Hygiene, Health and Environment" of the Construction Products Directive (89/106/EC). The potential hazard for environment and health may arise in different life cycle stages of a construction product. During the service life stage, the release of substances due to contact with the rain water is the main potential hazard source, as a consequence of the leaching phenomenon. The objective of this paper is to present the development of a coupled chemical-transport model for the case of a concrete based construction product, i.e. concrete paving slabs, exposed to rain water under outdoor exposure conditions. The development of the model is based on an iterative process of comparing the experimental results with the simulated results up to an acceptable fit. The experiments were conducted at laboratory scale (equilibrium and dynamic leaching tests) and field scale. The product was exposed for one year in two types of leaching scenarios under outdoor conditions, "runoff" and "stagnation", and the element release was monitored. The model was calibrated using the experimental data obtained at laboratory scale and validated against measured field data, by taking into account the specific rain water balance and the atmospheric CO2 uptake as input parameters. The numerical tool used in order to model and simulate the leaching behaviour was PHREEQC, coupled with the Lawrence Livermore National Laboratory (LLNL) thermodynamic data base. The simulation results are satisfying and the paper demonstrates the feasibility of the modelling approach for the leaching behaviour assessment of concrete type construction materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...