Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 25(17): 7605-15, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16107707

RESUMO

Several cytoplasmic polyadenylation element (CPE)-containing mRNAs that are repressed in Xenopus oocytes become active during meiotic maturation. A group of factors that are anchored to the CPE are responsible for this repression and activation. Two of the most important are CPEB, which binds directly to the CPE, and Maskin, which associates with CPEB. In oocytes, Maskin also binds eukaryotic translation initiation factor 4E (eIF4E), an interaction that excludes eIF4G and prevents formation of the eIF4F initiation complex. When the oocytes are stimulated to reenter the meiotic divisions (maturation), CPEB promotes cytoplasmic polyadenylation. The newly elongated poly(A) tail becomes bound by poly(A) binding protein (PABP), which in turn binds eIF4G and helps it displace Maskin from eIF4E, thereby inducing translation. Here we show that Maskin undergoes several phosphorylation events during oocyte maturation, some of which are important for its dissociation from eIF4E and translational activation of CPE-containing mRNA. These sites are T58, S152, S311, S343, S453, and S638 and are phosphorylated by cdk1. Mutation of these sites to alanine alleviates the cdk1-induced dissociation of Maskin from eIF4E. Prior to maturation, Maskin is phosphorylated on S626 by protein kinase A. While this modification has no detectable effect on translation during oocyte maturation, it is critical for this protein to localize on the mitotic apparatus in somatic cells. These results show that Maskin activity and localization is controlled by differential phosphorylation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Humanos , Dados de Sequência Molecular , Oócitos/citologia , Oócitos/metabolismo , Fosfoaminoácidos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Poliadenilação , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Fuso Acromático/genética , Proteína Estafilocócica A/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
2.
Cell ; 119(5): 641-51, 2004 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-15550246

RESUMO

Cytoplasmic polyadenylation-induced mRNA translation is a hallmark of early animal development. In Xenopus oocytes, where the molecular mechanism has been defined, the core factors that control this process include CPEB, an RNA binding protein whose association with the CPE specifies which mRNAs undergo polyadenylation; CPSF, a multifactor complex that interacts with the near-ubiquitous polyadenylation hexanucleotide AAUAAA; and maskin, a CPEB and eIF4E binding protein whose regulation of initiation is governed by poly(A) tail length. Here, we define two new factors that are essential for polyadenylation. The first is symplekin, a CPEB and CPSF binding protein that serves as a scaffold upon which regulatory factors are assembled. The second is xGLD-2, an unusual poly(A) polymerase that is anchored to CPEB and CPSF even before polyadenylation begins. The identification of these factors has broad implications for biological process that employ polyadenylation-regulated translation, such as gametogenesis, cell cycle progression, and synaptic plasticity.


Assuntos
Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/crescimento & desenvolvimento , Poliadenilação/genética , Polinucleotídeo Adenililtransferase/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Células Cultivadas , DNA Complementar/análise , DNA Complementar/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/isolamento & purificação , Feminino , Proteínas de Membrana , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Oócitos/metabolismo , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/isolamento & purificação , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/isolamento & purificação , Xenopus laevis , Fatores de Poliadenilação e Clivagem de mRNA
3.
RNA ; 8(10): 1334-47, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12403470

RESUMO

PTB-associated splicing factor (PSF) has been implicated in both early and late steps of pre-mRNA splicing, but its exact role in this process remains unclear. Here we show that PSF interacts with p54nrb, a highly related protein first identified based on cross-reactivity to antibodies against the yeast second-step splicing factor Prpl8. We performed RNA-binding experiments to determine the preferred RNA-binding sequences for PSF and p54nrb, both individually and in combination. In all cases, iterative selection assays identified a purine-rich sequence located on the 3' side of U5 snRNA stem 1b. Filter-binding assays and RNA affinity selection experiments demonstrated that PSF and p54nrb bind U5 snRNA with both the sequence and structure of stem 1b contributing to binding specificity. Sedimentation analyses show that both proteins associate with spliceosomes and with U4/U6.U5 tri-snPNP.


Assuntos
Proteínas Associadas à Matriz Nuclear , Proteínas Nucleares/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Reações Cruzadas , Proteínas de Ligação a DNA , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Conformação de Ácido Nucleico , Fatores de Transcrição de Octâmero , Fator de Processamento Associado a PTB , Purinas/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5 , Proteínas de Saccharomyces cerevisiae/imunologia , Spliceossomos/genética , Spliceossomos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
J Biol Chem ; 277(42): 39485-92, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12183448

RESUMO

SRrp86 is a unique member of the SR protein superfamily of splicing factors containing one RNA recognition motif and two serine-arginine (SR)-rich domains separated by an unusual glutamic acid-lysine (EK) rich region. Previously, we showed that SRrp86 could regulate alternative splicing by both positively and negatively modulating the activity of other SR proteins as long as the entire region encompassing the RS-EK-RS domains was intact. To further investigate the function and domains of SRrp86, we generated a series of chimeric proteins by swapping the RNA recognition motif and RS domains between SRrp86 and two canonical members of the SR superfamily, ASF/SF2 and SRp75. Although domain swaps between SRrp86 and ASF/SF2 showed that the RRMs primarily determined splicing activity, swaps between SRrp86 and SRp75 demonstrated that the RS domains could also determine activity. Because SRp75 also has two RS domains but lacks the EK domain, we further investigated the role of the EK domain and found that it acts to repress splicing and splice-site selection, both in vitro and in vivo. Incubation of extracts with peptides encompassing the EK-rich region inactivated splicing and insertion of the EK region into SRp75 abolished its ability to activate splicing. Thus, the unique EK domain of SRrp86 plays a modulatory role controlling RS domain function.


Assuntos
Proteínas de Transporte/química , Ácido Glutâmico/química , Lisina/química , Splicing de RNA , Proteínas de Ligação a RNA , Sequência de Aminoácidos , Arginina/química , Núcleo Celular/metabolismo , Códon , Éxons , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Serina/química , Fatores de Processamento de Serina-Arginina , Spliceossomos/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção
5.
RNA ; 8(4): 526-33, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11991645

RESUMO

SRrp86 is an 86-kDa member of the SR protein superfamily that is unique in that it can alter splice site selection by regulating the activity of other SR proteins. To study the function of SRrp86, inducible cell lines were created in which the concentration of SRrp86 could be varied and its effects on alternative splicing determined. Here, we show that SRrp86 can activate SRp20 and repress SC35 in a dose-dependent manner both in vitro and in vivo. These effects are apparently mediated through direct protein-protein interaction, as pull-down assays showed that SRrp86 interacts with both SRp20 and SC35. Consistent with the hypothesis that relatively modest changes in the concentration or activity of one or more splicing factors can combinatorially regulate overall splicing, protein expression patterns of SRrp86, SRp20, and SC35 reveal that each tissue maintains a unique ratio of these factors. Regulation of SR protein activity, coupled with regulated protein expression, suggest that SRrp86 may play a crucial role in determining tissue specific patterns of alternative splicing.


Assuntos
Processamento Alternativo , Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Western Blotting , Proteínas de Transporte/genética , Células Cultivadas , Células HeLa , Humanos , Proteínas Nucleares/genética , Especificidade de Órgãos , Fosfoproteínas/genética , Proteínas de Ligação a RNA/genética , Ratos , Fatores de Processamento de Serina-Arginina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...