Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1283127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029202

RESUMO

Mycotoxin contamination of corn is a pervasive problem that negatively impacts human and animal health and causes economic losses to the agricultural industry worldwide. Historical aflatoxin (AFL) and fumonisin (FUM) mycotoxin contamination data of corn, daily weather data, satellite data, dynamic geospatial soil properties, and land usage parameters were modeled to identify factors significantly contributing to the outbreaks of mycotoxin contamination of corn grown in Illinois (IL), AFL >20 ppb, and FUM >5 ppm. Two methods were used: a gradient boosting machine (GBM) and a neural network (NN). Both the GBM and NN models were dynamic at a state-county geospatial level because they used GPS coordinates of the counties linked to soil properties. GBM identified temperature and precipitation prior to sowing as significant influential factors contributing to high AFL and FUM contamination. AFL-GBM showed that a higher aflatoxin risk index (ARI) in January, March, July, and November led to higher AFL contamination in the southern regions of IL. Higher values of corn-specific normalized difference vegetation index (NDVI) in July led to lower AFL contamination in Central and Southern IL, while higher wheat-specific NDVI values in February led to higher AFL. FUM-GBM showed that temperature in July and October, precipitation in February, and NDVI values in March are positively correlated with high contamination throughout IL. Furthermore, the dynamic geospatial models showed that soil characteristics were correlated with AFL and FUM contamination. Greater calcium carbonate content in soil was negatively correlated with AFL contamination, which was noticeable in Southern IL. Greater soil moisture and available water-holding capacity throughout Southern IL were positively correlated with high FUM contamination. The higher clay percentage in the northeastern areas of IL negatively correlated with FUM contamination. NN models showed high class-specific performance for 1-year predictive validation for AFL (73%) and FUM (85%), highlighting their accuracy for annual mycotoxin prediction. Our models revealed that soil, NDVI, year-specific weekly average precipitation, and temperature were the most important factors that correlated with mycotoxin contamination. These findings serve as reliable guidelines for future modeling efforts to identify novel data inputs for the prediction of AFL and FUM outbreaks and potential farm-level management practices.

2.
Front Microbiol ; 13: 1039947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439814

RESUMO

Mycotoxin contamination of corn results in significant agroeconomic losses and poses serious health issues worldwide. This paper presents the first report utilizing machine learning and historical aflatoxin and fumonisin contamination levels in-order-to develop models that can confidently predict mycotoxin contamination of corn in Illinois, a major corn producing state in the USA. Historical monthly meteorological data from a 14-year period combined with corresponding aflatoxin and fumonisin contamination data from the State of Illinois were used to engineer input features that link weather, fungal growth, and aflatoxin production in combination with gradient boosting (GBM) and bayesian network (BN) modeling. The GBM and BN models developed can predict mycotoxin contamination with overall 94% accuracy. Analyses for aflatoxin and fumonisin with GBM showed that meteorological and satellite-acquired vegetative index data during March significantly influenced grain contamination at the end of the corn growing season. Prediction of high aflatoxin contamination levels was linked to high aflatoxin risk index in March/June/July, high vegetative index in March and low vegetative index in July. Correspondingly, high levels of fumonisin contamination were linked to high precipitation levels in February/March/September and high vegetative index in March. During corn flowering time in June, higher temperatures range increased prediction of high levels of fumonisin contamination, while high aflatoxin contamination levels were linked to high aflatoxin risk index. Meteorological events prior to corn planting in the field have high influence on predicting aflatoxin and fumonisin contamination levels at the end of the year. These early-year events detected by the models can directly assist farmers and stakeholders to make informed decisions to prevent mycotoxin contamination of Illinois grown corn.

3.
Toxins (Basel) ; 14(8)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-36006185

RESUMO

Fumonisins are a group of mycotoxins that routinely contaminate maize. Their presence is monitored at multiple stages from harvest to final product. Immunoassays are routinely used to screen commodities in the field while laboratory-based methods, such as mass spectrometry (MS), are used for confirmation. The use of a portable mass spectrometer unlocks the potential to conduct confirmatory analyses outside of traditional laboratories. Herein, a portable mass spectrometer was used to measure fumonisins in maize. Samples were extracted with aqueous methanol, cleaned up on an immunoaffinity column, and tested with the portable MS. The limits of detection were 0.15, 0.19, and 0.28 mg/kg maize for fumonisins B1 (FB1), FB2/FB3, and total fumonisins, respectively. The corresponding limits of quantitation in maize were 0.33, 0.59, and 0.74 mg/kg. Recoveries ranged from 93.6% to 108.6%. However, RSDs ranged from 12.0 to 29.8%. The method was applied to the detection of fumonisins in 64 samples of maize collected as part of the Illinois Department of Agriculture's monitoring program. Good correlations were observed between the portable MS and a laboratory-based LC-MS method (r2 from 0.9132 to 0.9481). Results suggest the portable MS can be applied to the measurement of fumonisins in maize at levels relevant to international regulations.


Assuntos
Fumonisinas , Micotoxinas , Contaminação de Alimentos/análise , Fumonisinas/análise , Espectrometria de Massas/métodos , Micotoxinas/análise , Água/análise , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...