Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0279841, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943842

RESUMO

Cortical and basal ganglia circuits play a crucial role in the formation of goal-directed and habitual behaviors. In this study, we investigate the cortico-striatal circuitry involved in learning and the role of this circuitry in the emergence of inflexible behaviors such as those observed in addiction. Specifically, we develop a computational model of cortico-striatal interactions that performs concurrent goal-directed and habit learning. The model accomplishes this by distinguishing learning processes in the dorsomedial striatum (DMS) that rely on reward prediction error signals as distinct from the dorsolateral striatum (DLS) where learning is supported by salience signals. These striatal subregions each operate on unique cortical input: the DMS receives input from the prefrontal cortex (PFC) which represents outcomes, and the DLS receives input from the premotor cortex which determines action selection. Following an initial learning of a two-alternative forced choice task, we subjected the model to reversal learning, reward devaluation, and learning a punished outcome. Behavior driven by stimulus-response associations in the DLS resisted goal-directed learning of new reward feedback rules despite devaluation or punishment, indicating the expression of habit. We repeated these simulations after the impairment of executive control, which was implemented as poor outcome representation in the PFC. The degraded executive control reduced the efficacy of goal-directed learning, and stimulus-response associations in the DLS were even more resistant to the learning of new reward feedback rules. In summary, this model describes how circuits of the dorsal striatum are dynamically engaged to control behavior and how the impairment of executive control by the PFC enhances inflexible behavior.


Assuntos
Gânglios da Base , Corpo Estriado , Corpo Estriado/fisiologia , Gânglios da Base/fisiologia , Neostriado , Motivação , Reversão de Aprendizagem , Recompensa
2.
Neuropharmacology ; 198: 108780, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34480911

RESUMO

Acute ethanol (EtOH) intoxication results in several maladaptive behaviors that may be attributable, in part, to the effects of EtOH on neural activity in medial prefrontal cortex (mPFC). The acute effects of EtOH on mPFC function have been largely described as inhibitory. However, translating these observations on function into a mechanism capable of delineating acute EtOH's effects on behavior has proven difficult. This review highlights the role of acute EtOH on electrophysiological measurements of mPFC function and proposes that interpreting these changes through the lens of dynamical systems theory is critical to understand the mechanisms that mediate the effects of EtOH intoxication on behavior. Specifically, the present review posits that the effects of EtOH on mPFC N-methyl-d-aspartate (NMDA) receptors are critical for the expression of impaired behavior following EtOH consumption. This hypothesis is based on the observation that recurrent activity in cortical networks is supported by NMDA receptors, and, when disrupted, may lead to impairments in cognitive function. To evaluate this hypothesis, we discuss the representation of mPFC neural activity in low-dimensional, dynamic state spaces. This approach has proven useful for identifying the underlying computations necessary for the production of behavior. Ultimately, we hypothesize that EtOH-related alterations to NMDA receptor function produces alterations that can be effectively conceptualized as impairments in attractor dynamics and provides insight into how acute EtOH disrupts forms of cognition that rely on mPFC function. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Consumo de Bebidas Alcoólicas , Intoxicação Alcoólica/psicologia , Alcoolismo , Animais , Humanos , Rede Nervosa/efeitos dos fármacos
3.
J Neurosci ; 41(30): 6468-6483, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34103361

RESUMO

Central pattern generators (CPGs), specialized oscillatory neuronal networks controlling rhythmic motor behaviors such as breathing and locomotion, must adjust their patterns of activity to a variable environment and changing behavioral goals. Neuromodulation adjusts these patterns by orchestrating changes in multiple ionic currents. In the medicinal leech, the endogenous neuromodulator myomodulin speeds up the heartbeat CPG by reducing the electrogenic Na+/K+ pump current and increasing h-current in pairs of mutually inhibitory leech heart interneurons (HNs), which form half-center oscillators (HN HCOs). Here we investigate whether the comodulation of two currents could have advantages over a single current in the control of functional bursting patterns of a CPG. We use a conductance-based biophysical model of an HN HCO to explain the experimental effects of myomodulin. We demonstrate that, in the model, comodulation of the Na+/K+ pump current and h-current expands the range of functional bursting activity by avoiding transitions into nonfunctional regimes, such as asymmetric bursting and plateau-containing seizure-like activity. We validate the model by finding parameters that reproduce temporal bursting characteristics matching experimental recordings from HN HCOs under control, three different myomodulin concentrations, and Cs+ treated conditions. The matching cases are located along the border of an asymmetric regime away from the border with more dangerous seizure-like activity. We found a simple comodulation mechanism with an inverse relation between the pump and h-currents makes a good fit of the matching cases and comprises a general mechanism for the robust and flexible control of oscillatory neuronal networks.SIGNIFICANCE STATEMENT Rhythm-generating neuronal circuits adjust their oscillatory patterns to accommodate a changing environment through neuromodulation. In different species, chemical messengers participating in such processes may target two or more membrane currents. In medicinal leeches, the neuromodulator myomodulin speeds up the heartbeat central pattern generator by reducing Na+/K+ pump current and increasing h-current. In a computational model, we show that this comodulation expands the range of central pattern generator's functional activity by navigating the circuit between dysfunctional regimes resulting in a much wider range of cycle period. This control would not be attainable by modulating only one current, emphasizing the synergy of combined effects. Given the prevalence of h-current and Na+/K+ pump current in neurons, similar comodulation mechanisms may exist across species.


Assuntos
Geradores de Padrão Central/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Neuropeptídeos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Potenciais de Ação/fisiologia , Animais , Simulação por Computador , Sanguessugas
4.
Exp Physiol ; 106(5): 1181-1195, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33749038

RESUMO

NEW FINDINGS: Cardio-ventilatory coupling refers to the onset of inspiration occurring at a preferential latency following the last heartbeat (HB) in expiration. According to the cardiac-trigger hypothesis, the pulse pressure initiates an inspiration via baroreceptor activation. However, the central neural substrate mediating this coupling remains undefined. Using a combination of animal data, human data and mathematical modelling, this study tests the hypothesis that the HB, by way of pulsatile baroreflex activation, controls the initiation of inspiration that occurs through a rapid neural activation loop from the carotid baroreceptors to Bötzinger complex expiratory neurons. ABSTRACT: Cardio-ventilatory coupling refers to a heartbeat (HB) occurring at a preferred latency prior to the next breath. We hypothesized that the pressure pulse generated by a HB activates baroreceptors that modulate brainstem expiratory neuronal activity and delay the initiation of inspiration. In supine male subjects, we recorded ventilation, electrocardiogram and blood pressure during 20-min epochs of baseline, slow-deep breathing and recovery. In in situ rodent preparations, we recorded brainstem activity in response to pulses of perfusion pressure. We applied a well-established respiratory network model to interpret these data. In humans, the latency between a HB and onset of inspiration was consistent across different breathing patterns. In in situ preparations, a transient pressure pulse during expiration activated a subpopulation of expiratory neurons normally active during post-inspiration, thus delaying the next inspiration. In the model, baroreceptor input to post-inspiratory neurons accounted for the effect. These studies are consistent with baroreflex activation modulating respiration through a pauci-synaptic circuit from baroreceptors to onset of inspiration.


Assuntos
Pressorreceptores , Respiração , Animais , Barorreflexo , Pressão Sanguínea , Frequência Cardíaca , Humanos , Masculino , Pressorreceptores/fisiologia
5.
J Appl Physiol (1985) ; 129(5): 1193-1202, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32940558

RESUMO

Excessive blood pressure variation is linked to the development of hypertension and other diseases. This study assesses the relative role of respiratory sinus arrhythmia (RSA) and pulse pressure (PP) on the amplitude and timing of blood pressure variability with respiration [Traube-Hering (TH) waves]. We analyzed respiratory, electrocardiogram, and blood pressure traces from healthy, supine male subjects (n = 10, mean age = 26.7 ± 1.4) during 20-min epochs of resting, slow deep breathing (SDB), and recovery. Across all epochs, blood pressure and heart rate (HR) were modulated with respiration and the magnitude of RSA; TH waves increased during SDB. The data were deconstructed using a simple mathematical model of blood pressure to dissect the relative roles of RSA and PP on TH waves. We constructed the time series of the R-wave peaks and compared the recorded TH waves with that predicted by the model. Given that cardiac output is determined by both heart rate and stroke volume, it was surprising that the magnitude of the TH waves could be captured by only HR modulation. However, RSA alone did not accurately predict the timing of TH waves relative to the respiratory cycle. Adding respiratory modulation of PP to the model corrected the phase shift showing the expected pattern of BP rising during inspiration with the peak of the TH wave during early expiration. We conclude that short-term variability of blood pressure referred to as TH waves has at least two independent mechanisms whose interaction forms their pattern: RSA and respiratory-driven changes in PP.NEW & NOTEWORTHY Variability in blood pressure has become an important metric to consider as more is learned about the link between excessive blood pressure variability and adverse health outcomes. In this study using slow deep breathing in human subjects, we found that heart rate and pulse pressure variations have comparable effects on the amplitude of blood pressure waves, and it is the common action of the two that defines the phase relationship between respiration and blood pressure oscillations.


Assuntos
Pressão Sanguínea , Arritmia Sinusal Respiratória , Adulto , Arritmia Sinusal , Eletrocardiografia , Frequência Cardíaca , Humanos , Masculino , Respiração
6.
J Physiol ; 598(21): 4969-4994, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32621515

RESUMO

KEY POINTS: Contraction of abdominal muscles at the end of expiration during metabolic challenges (such as hypercapnia and hypoxia) improves pulmonary ventilation. The emergence of this active expiratory pattern requires the recruitment of the expiratory oscillator located on the ventral surface of the medulla oblongata. Here we show that an inhibitory circuitry located in the Bötzinger complex is an important source of inhibitory drive to the expiratory oscillator. This circuitry, mediated by GABAergic and glycinergic synapses, provides expiratory inhibition that restrains the expiratory oscillator under resting condition and regulates the formation of abdominal expiratory activity during active expiration. By combining experimental and modelling approaches, we propose the organization and connections within the respiratory network that control the changes in the breathing pattern associated with elevated metabolic demand. ABSTRACT: The expiratory neurons of the Bötzinger complex (BötC) provide inhibitory inputs to the respiratory network, which, during eupnoea, are critically important for respiratory phase transition and duration control. Here, we investigated how the BötC neurons interact with the expiratory oscillator located in the parafacial respiratory group (pFRG) and control the abdominal activity during active expiration. Using the decerebrated, arterially perfused in situ preparations of juvenile rats, we recorded the activity of expiratory neurons and performed pharmacological manipulations of the BötC and pFRG during hypercapnia or after the exposure to short-term sustained hypoxia - conditions that generate active expiration. The experimental data were integrated in a mathematical model to gain new insights into the inhibitory connectome within the respiratory central pattern generator. Our results indicate that the BötC neurons may establish mutual connections with the pFRG, providing expiratory inhibition during the first stage of expiration and receiving excitatory inputs during late expiration. Moreover, we found that application of GABAergic and glycinergic antagonists in the BötC caused opposing effects on abdominal expiratory activity, suggesting complex inhibitory circuitry within the BötC. Using mathematical modelling, we propose that the BötC network organization and its interactions with the pFRG restrain abdominal activity under resting conditions and contribute to abdominal expiratory pattern formation during active expiration observed during hypercapnia or after the exposure to short-term sustained hypoxia.


Assuntos
Bulbo , Transmissão Sináptica , Animais , Hipercapnia , Neurônios , Ratos , Respiração
7.
PLoS One ; 14(4): e0214926, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30978216

RESUMO

Motor adaptation to perturbations is provided by learning mechanisms operating in the cerebellum and basal ganglia. The cerebellum normally performs motor adaptation through supervised learning using information about movement error provided by visual feedback. However, if visual feedback is critically distorted, the system may disengage cerebellar error-based learning and switch to reinforcement learning mechanisms mediated by basal ganglia. Yet, the exact conditions and mechanisms of cerebellum and basal ganglia involvement in motor adaptation remain unknown. We use mathematical modeling to simulate control of planar reaching movements that relies on both error-based and non-error-based learning mechanisms. We show that for learning to be efficient only one of these mechanisms should be active at a time. We suggest that switching between the mechanisms is provided by a special circuit that effectively suppresses the learning process in one structure and enables it in the other. To do so, this circuit modulates learning rate in the cerebellum and dopamine release in basal ganglia depending on error-based learning efficiency. We use the model to explain and interpret experimental data on error- and non-error-based motor adaptation under different conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Gânglios da Base/fisiologia , Cerebelo/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Humanos
8.
Neuroscience ; 406: 467-486, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30930131

RESUMO

Obstructive sleep apnea patients face episodes of chronic intermittent hypoxia (CIH), which has been suggested as a causative factor for increased sympathetic activity (SNA) and hypertension. Female rats exposed to CIH develop hypertension and exhibit changes in respiratory-sympathetic coupling, marked by an increase in the inspiratory modulation of SNA. We tested the hypothesis that enhanced inspiratory-modulation of SNA is dependent on carotid bodies (CBs) and are associated with changes in respiratory network activity. For this, in CIH-female rats we evaluated the effect of CBs ablation on respiratory-sympathetic coupling, recorded from respiratory neurons in the working heart-brainstem preparation and from NTS neurons in brainstem slices. CIH-female rats had an increase in peripheral chemoreflex response and in spontaneous excitatory neurotransmission in NTS. CBs ablation prevents the increase in inspiratory modulation of SNA in CIH-female rats. Pre-inspiratory/inspiratory (Pre-I/I) neurons of CIH-female rats have a reduced firing frequency. Post-inspiratory neurons are active for a longer period during expiration in CIH-female rats. Further, using the computational model of a brainstem respiratory-sympathetic network, we demonstrate that a reduction in Pre-I/I neuron firing frequency simulates the enhanced inspiratory SNA modulation in CIH-female rats. We conclude that changes in respiratory-sympathetic coupling in CIH-female rats is dependent on CBs and it is associated with changes in firing properties of specific respiratory neurons types.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipóxia/fisiopatologia , Inalação/fisiologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Animais , Corpo Carotídeo/fisiopatologia , Feminino , Ratos , Ratos Wistar
9.
Front Neural Circuits ; 13: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846930

RESUMO

In this study, we explore the functional role of striatal cholinergic interneurons, hereinafter referred to as tonically active neurons (TANs), via computational modeling; specifically, we investigate the mechanistic relationship between TAN activity and dopamine variations and how changes in this relationship affect reinforcement learning in the striatum. TANs pause their tonic firing activity after excitatory stimuli from thalamic and cortical neurons in response to a sensory event or reward information. During the pause striatal dopamine concentration excursions are observed. However, functional interactions between the TAN pause and striatal dopamine release are poorly understood. Here we propose a TAN activity-dopamine relationship model and demonstrate that the TAN pause is likely a time window to gate phasic dopamine release and dopamine variations reciprocally modulate the TAN pause duration. Furthermore, this model is integrated into our previously published model of reward-based motor adaptation to demonstrate how phasic dopamine release is gated by the TAN pause to deliver reward information for reinforcement learning in a timely manner. We also show how TAN-dopamine interactions are affected by striatal dopamine deficiency to produce poor performance of motor adaptation.


Assuntos
Neurônios Colinérgicos/fisiologia , Simulação por Computador , Corpo Estriado/citologia , Modelos Neurológicos , Reforço Psicológico , Animais , Dopamina/metabolismo , Humanos , Vias Neurais/fisiologia
10.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L891-L909, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188747

RESUMO

The retrotrapezoid nucleus (RTN) contains chemosensitive cells that distribute CO2-dependent excitatory drive to the respiratory network. This drive facilitates the function of the respiratory central pattern generator (rCPG) and increases sympathetic activity. It is also evidenced that during hypercapnia, the late-expiratory (late-E) oscillator in the parafacial respiratory group (pFRG) is activated and determines the emergence of active expiration. However, it remains unclear the microcircuitry responsible for the distribution of the excitatory signals to the pFRG and the rCPG in conditions of high CO2. Herein, we hypothesized that excitatory inputs from chemosensitive neurons in the RTN are necessary for the activation of late-E neurons in the pFRG. Using the decerebrated in situ rat preparation, we found that lesions of neurokinin-1 receptor-expressing neurons in the RTN region with substance P-saporin conjugate suppressed the late-E activity in abdominal nerves (AbNs) and sympathetic nerves (SNs) and attenuated the increase in phrenic nerve (PN) activity induced by hypercapnia. On the other hand, kynurenic acid (100 mM) injections in the pFRG eliminated the late-E activity in AbN and thoracic SN but did not modify PN response during hypercapnia. Iontophoretic injections of retrograde tracer into the pFRG of adult rats revealed labeled phox2b-expressing neurons within the RTN. Our findings are supported by mathematical modeling of chemosensitive and late-E populations within the RTN and pFRG regions as two separate but interacting populations in a way that the activation of the pFRG late-E neurons during hypercapnia require glutamatergic inputs from the RTN neurons that intrinsically detect changes in CO2/pH.


Assuntos
Núcleo Celular/fisiologia , Expiração/fisiologia , Neurônios/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Dióxido de Carbono/metabolismo , Núcleo Celular/metabolismo , Concentração de Íons de Hidrogênio , Hipercapnia/metabolismo , Hipercapnia/fisiopatologia , Masculino , Neurônios/metabolismo , Nervo Frênico/metabolismo , Nervo Frênico/fisiopatologia , Ratos , Ratos Wistar , Receptores da Neurocinina-1/metabolismo , Sistema Nervoso Simpático/metabolismo
11.
PLoS Comput Biol ; 14(4): e1006148, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29698394

RESUMO

The circuit organization within the mammalian brainstem respiratory network, specifically within and between the pre-Bötzinger (pre-BötC) and Bötzinger (BötC) complexes, and the roles of these circuits in respiratory pattern generation are continuously debated. We address these issues with a combination of optogenetic experiments and modeling studies. We used transgenic mice expressing channelrhodopsin-2 under the VGAT-promoter to investigate perturbations of respiratory circuit activity by site-specific photostimulation of inhibitory neurons within the pre-BötC or BötC. The stimulation effects were dependent on the intensity and phase of the photostimulation. Specifically: (1) Low intensity (≤ 1.0 mW) pulses delivered to the pre-BötC during inspiration did not terminate activity, whereas stronger stimulations (≥ 2.0 mW) terminated inspiration. (2) When the pre-BötC stimulation ended in or was applied during expiration, rebound activation of inspiration occurred after a fixed latency. (3) Relatively weak sustained stimulation (20 Hz, 0.5-2.0 mW) of pre-BötC inhibitory neurons increased respiratory frequency, while a further increase of stimulus intensity (> 3.0 mW) reduced frequency and finally (≥ 5.0 mW) terminated respiratory oscillations. (4) Single pulses (0.2-5.0 s) applied to the BötC inhibited rhythmic activity for the duration of the stimulation. (5) Sustained stimulation (20 Hz, 0.5-3.0 mW) of the BötC reduced respiratory frequency and finally led to apnea. We have revised our computational model of pre-BötC and BötC microcircuits by incorporating an additional population of post-inspiratory inhibitory neurons in the pre-BötC that interacts with other neurons in the network. This model was able to reproduce the above experimental findings as well as previously published results of optogenetic activation of pre-BötC or BötC neurons obtained by other laboratories. The proposed organization of pre-BötC and BötC circuits leads to testable predictions about their specific roles in respiratory pattern generation and provides important insights into key circuit interactions operating within brainstem respiratory networks.


Assuntos
Modelos Neurológicos , Centro Respiratório/fisiologia , Animais , Geradores de Padrão Central/fisiologia , Biologia Computacional , Simulação por Computador , Conectoma , Fenômenos Eletrofisiológicos , Camundongos , Camundongos Transgênicos , Optogenética , Estimulação Luminosa , Centro Respiratório/citologia , Fenômenos Fisiológicos Respiratórios , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
12.
J Neurophysiol ; 119(2): 401-412, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070631

RESUMO

Coordination of respiratory pump and valve muscle activity is essential for normal breathing. A hallmark respiratory response to hypercapnia and hypoxia is the emergence of active exhalation, characterized by abdominal muscle pumping during the late one-third of expiration (late-E phase). Late-E abdominal activity during hypercapnia has been attributed to the activation of expiratory neurons located within the parafacial respiratory group (pFRG). However, the mechanisms that control emergence of active exhalation, and its silencing in restful breathing, are not completely understood. We hypothesized that inputs from the Kölliker-Fuse nucleus (KF) control the emergence of late-E activity during hypercapnia. Previously, we reported that reversible inhibition of the KF reduced postinspiratory (post-I) motor output to laryngeal adductor muscles and brought forward the onset of hypercapnia-induced late-E abdominal activity. Here we explored the contribution of the KF for late-E abdominal recruitment during hypercapnia by pharmacologically disinhibiting the KF in in situ decerebrate arterially perfused rat preparations. These data were combined with previous results and incorporated into a computational model of the respiratory central pattern generator. Disinhibition of the KF through local parenchymal microinjections of gabazine (GABAA receptor antagonist) prolonged vagal post-I activity and inhibited late-E abdominal output during hypercapnia. In silico, we reproduced this behavior and predicted a mechanism in which the KF provides excitatory drive to post-I inhibitory neurons, which in turn inhibit late-E neurons of the pFRG. Although the exact mechanism proposed by the model requires testing, our data confirm that the KF modulates the formation of late-E abdominal activity during hypercapnia. NEW & NOTEWORTHY The pons is essential for the formation of the three-phase respiratory pattern, controlling the inspiratory-expiratory phase transition. We provide functional evidence of a novel role for the Kölliker-Fuse nucleus (KF) controlling the emergence of abdominal expiratory bursts during active expiration. A computational model of the respiratory central pattern generator predicts a possible mechanism by which the KF interacts indirectly with the parafacial respiratory group and exerts an inhibitory effect on the expiratory conditional oscillator.


Assuntos
Hipercapnia/fisiopatologia , Núcleo de Kölliker-Fuse/fisiologia , Nervos Periféricos/fisiologia , Respiração , Animais , Geradores de Padrão Central/fisiologia , Potencial Evocado Motor , Núcleo de Kölliker-Fuse/fisiopatologia , Masculino , Modelos Neurológicos , Nervos Periféricos/fisiopatologia , Ratos , Ratos Wistar , Músculos Respiratórios/inervação
13.
PLoS One ; 12(6): e0179288, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28632736

RESUMO

The motor cortex controls motor behaviors by generating movement-specific signals and transmitting them through spinal cord circuits and motoneurons to the muscles. Precise and well-coordinated muscle activation patterns are necessary for accurate movement execution. Therefore, the activity of cortical neurons should correlate with movement parameters. To investigate the specifics of such correlations among activities of the motor cortex, spinal cord network and muscles, we developed a model for neural control of goal-directed reaching movements that simulates the entire pathway from the motor cortex through spinal cord circuits to the muscles controlling arm movements. In this model, the arm consists of two joints (shoulder and elbow), whose movements are actuated by six muscles (4 single-joint and 2 double-joint flexors and extensors). The muscles provide afferent feedback to the spinal cord circuits. Cortical neurons are defined as cortical "controllers" that solve an inverse problem based on a proposed straight-line trajectory to a target position and a predefined bell-shaped velocity profile. Thus, the controller generates a motor program that produces a task-specific activation of low-level spinal circuits that in turn induce the muscle activation realizing the intended reaching movement. Using the model, we describe the mechanisms of correlation between cortical and motoneuronal activities and movement direction and other movement parameters. We show that the directional modulation of neuronal activity in the motor cortex and the spinal cord may result from direction-specific dynamics of muscle lengths. Our model suggests that directional modulation first emerges at the level of muscle forces, augments at the motoneuron level, and further increases at the level of the motor cortex due to the dependence of frictional forces in the joints, contractility of the muscles and afferent feedback on muscle lengths and/or velocities.


Assuntos
Braço/fisiologia , Articulação do Cotovelo/fisiologia , Córtex Motor/fisiologia , Neurônios Motores/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Humanos , Contração Muscular
14.
Front Comput Neurosci ; 11: 19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28408878

RESUMO

It is widely accepted that the basal ganglia (BG) play a key role in action selection and reinforcement learning. However, despite considerable number of studies, the BG architecture and function are not completely understood. Action selection and reinforcement learning are facilitated by the activity of dopaminergic neurons, which encode reward prediction errors when reward outcomes are higher or lower than expected. The BG are thought to select proper motor responses by gating appropriate actions, and suppressing inappropriate ones. The direct striato-nigral (GO) and the indirect striato-pallidal (NOGO) pathways have been suggested to provide the functions of BG in the two-pathway concept. Previous models confirmed the idea that these two pathways can mediate the behavioral choice, but only for a relatively small number of potential behaviors. Recent studies have provided new evidence of BG involvement in motor adaptation tasks, in which adaptation occurs in a non-error-based manner. In such tasks, there is a continuum of possible actions, each represented by a complex neuronal activity pattern. We extended the classical concept of the two-pathway BG by creating a model of BG interacting with a movement execution system, which allows for an arbitrary number of possible actions. The model includes sensory and premotor cortices, BG, a spinal cord network, and a virtual mechanical arm performing 2D reaching movements. The arm is composed of 2 joints (shoulder and elbow) controlled by 6 muscles (4 mono-articular and 2 bi-articular). The spinal cord network contains motoneurons, controlling the muscles, and sensory interneurons that receive afferent feedback and mediate basic reflexes. Given a specific goal-oriented motor task, the BG network through reinforcement learning constructs a behavior from an arbitrary number of basic actions represented by cortical activity patterns. Our study confirms that, with slight modifications, the classical two-pathway BG concept is consistent with results of previous studies, including non-error based motor adaptation experiments, pharmacological manipulations with BG nuclei, and functional deficits observed in BG-related motor disorders.

15.
Exp Neurol ; 287(Pt 2): 153-164, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27240520

RESUMO

The respiratory central pattern generator must respond to chemosensory cues to maintain oxygen (O2) and carbon dioxide (CO2) homeostasis in the blood and tissues. To do this, sensorial cells located in the periphery and central nervous system monitor the arterial partial pressure of O2 and CO2 and initiate respiratory and autonomic reflex adjustments in conditions of hypoxia and hypercapnia. In conditions of chronic intermittent hypoxia (CIH), repeated peripheral chemoreceptor input mediated by the nucleus of the solitary tract induces plastic changes in respiratory circuits that alter baseline respiratory and sympathetic motor outputs and result in chemoreflex sensitization, active expiration, and arterial hypertension. Herein, we explored the hypothesis that the CIH-induced neuroplasticity primarily consists of increased excitability of pre-inspiratory/inspiratory neurons in the pre-Bötzinger complex. To evaluate this hypothesis and elucidate neural mechanisms for the emergence of active expiration and sympathetic overactivity in CIH-treated animals, we extended a previously developed computational model of the brainstem respiratory-sympathetic network to reproduce experimental data on peripheral and central chemoreflexes post-CIH. The model incorporated neuronal connections between the 2nd-order NTS neurons and peripheral chemoreceptors afferents, the respiratory pattern generator, and sympathetic neurons in the rostral ventrolateral medulla in order to capture key features of sympathetic and respiratory responses to peripheral chemoreflex stimulation. Our model identifies the potential neuronal groups recruited during peripheral chemoreflex stimulation that may be required for the development of inspiratory, expiratory and sympathetic reflex responses. Moreover, our model predicts that pre-inspiratory neurons in the pre-Bötzinger complex experience plasticity of channel expression due to excessive excitation during peripheral chemoreflex. Simulations also show that, due to positive interactions between pre-inspiratory neurons in the pre-Bötzinger complex and expiratory neurons in the retrotrapezoid nucleus, increased excitability of the former may lead to the emergence of the active expiratory pattern at normal CO2 levels found after CIH exposure. We conclude that neuronal type specific neuroplasticity in the pre-Bötzinger complex induced by repetitive episodes of peripheral chemoreceptor activation by hypoxia may contribute to the development of sympathetic over-activity and hypertension.


Assuntos
Células Quimiorreceptoras/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Sistema Respiratório/citologia , Animais , Humanos , Fenômenos Fisiológicos Respiratórios
16.
Elife ; 52016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27588351

RESUMO

The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na(+)/K(+) pump current to such bursting activity has not been well studied. We used monensin, a Na(+)/H(+) antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs(+). The decreased period could also occur if the pump was inhibited with strophanthidin or K(+)-free saline. Our monensin results were reproduced in model, which explains the pump's contributions to bursting activity based on Na(+) dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks.


Assuntos
Potenciais de Ação , Geradores de Padrão Central/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Césio/metabolismo , Coração , Sanguessugas , Monensin/metabolismo , Ionóforos de Sódio/metabolismo
17.
PLoS One ; 9(1): e85451, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24497927

RESUMO

The dynamics of individual neurons are crucial for producing functional activity in neuronal networks. An open question is how temporal characteristics can be controlled in bursting activity and in transient neuronal responses to synaptic input. Bifurcation theory provides a framework to discover generic mechanisms addressing this question. We present a family of mechanisms organized around a global codimension-2 bifurcation. The cornerstone bifurcation is located at the intersection of the border between bursting and spiking and the border between bursting and silence. These borders correspond to the blue sky catastrophe bifurcation and the saddle-node bifurcation on an invariant circle (SNIC) curves, respectively. The cornerstone bifurcation satisfies the conditions for both the blue sky catastrophe and SNIC. The burst duration and interburst interval increase as the inverse of the square root of the difference between the corresponding bifurcation parameter and its bifurcation value. For a given set of burst duration and interburst interval, one can find the parameter values supporting these temporal characteristics. The cornerstone bifurcation also determines the responses of silent and spiking neurons. In a silent neuron with parameters close to the SNIC, a pulse of current triggers a single burst. In a spiking neuron with parameters close to the blue sky catastrophe, a pulse of current temporarily silences the neuron. These responses are stereotypical: the durations of the transient intervals-the duration of the burst and the duration of latency to spiking-are governed by the inverse-square-root laws. The mechanisms described here could be used to coordinate neuromuscular control in central pattern generators. As proof of principle, we construct small networks that control metachronal-wave motor pattern exhibited in locomotion. This pattern is determined by the phase relations of bursting neurons in a simple central pattern generator modeled by a chain of oscillators.


Assuntos
Potenciais de Ação/fisiologia , Algoritmos , Modelos Neurológicos , Neurônios/fisiologia , Animais , Simulação por Computador , Humanos , Fatores de Tempo
18.
PLoS Comput Biol ; 9(3): e1002930, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505348

RESUMO

Flexibility in neuronal circuits has its roots in the dynamical richness of their neurons. Depending on their membrane properties single neurons can produce a plethora of activity regimes including silence, spiking and bursting. What is less appreciated is that these regimes can coexist with each other so that a transient stimulus can cause persistent change in the activity of a given neuron. Such multistability of the neuronal dynamics has been shown in a variety of neurons under different modulatory conditions. It can play either a functional role or present a substrate for dynamical diseases. We considered a database of an isolated leech heart interneuron model that can display silent, tonic spiking and bursting regimes. We analyzed only the cases of endogenous bursters producing functional half-center oscillators (HCOs). Using a one parameter (the leak conductance (g(leak)) bifurcation analysis, we extended the database to include silent regimes (stationary states) and systematically classified cases for the coexistence of silent and bursting regimes. We showed that different cases could exhibit two stable depolarized stationary states and two hyperpolarized stationary states in addition to various spiking and bursting regimes. We analyzed all cases of endogenous bursters and found that 18% of the cases were multistable, exhibiting coexistences of stationary states and bursting. Moreover, 91% of the cases exhibited multistability in some range of g(leak). We also explored HCOs built of multistable neuron cases with coexisting stationary states and a bursting regime. In 96% of cases analyzed, the HCOs resumed normal alternating bursting after one of the neurons was reset to a stationary state, proving themselves robust against this perturbation.


Assuntos
Interneurônios/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia , Animais , Sobrevivência Celular/fisiologia , Simulação por Computador , Bases de Dados Factuais , Coração/fisiologia , Sanguessugas , Miocárdio/citologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...