Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
J Parkinsons Dis ; 14(2): 227-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427502

RESUMO

Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/patologia , Membrana Externa Bacteriana/patologia , Inflamação/complicações , Microbioma Gastrointestinal/fisiologia , Mamíferos
2.
Br J Pharmacol ; 181(1): 87-106, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37553894

RESUMO

BACKGROUND AND PURPOSE: Tau pathology contributes to a bidirectional relationship between sleep disruption and neurodegenerative disease. Tau transgenic rTg4510 mice model tauopathy symptoms, including sleep/wake disturbances, which manifest as marked hyperarousal. This phenotype can be prevented by early transgene suppression; however, whether hyperarousal can be rescued after onset is unknown. EXPERIMENTAL APPROACH: Three 8-week experiments were conducted with wild-type and rTg4510 mice after age of onset of hyperarousal (4.5 months): (1) Tau transgene suppression with doxycycline (200 ppm); (2) inactive phase rapid eye movement (REM) sleep enhancement with the dual orexin receptor antagonist suvorexant (50 mg·kg-1 ·day-1 ); or (3) Active phase non-NREM (NREM) and REM sleep enhancement using the selective orexin 2 (OX2 ) receptor antagonist MK-1064 (40 mg·kg-1 ·day-1 ). Sleep was assessed using polysomnography, cognition using the Barnes maze, and tau pathology using immunoblotting and/or immunohistochemistry. KEY RESULTS: Tau transgene suppression improved tauopathy and hippocampal-dependent spatial memory, but did not modify hyperarousal. Pharmacological rescue of REM sleep deficits did not improve spatial memory or tau pathology. In contrast, normalising hyperarousal by increasing both NREM and REM sleep via OX2 receptor antagonism restored spatial memory, independently of tauopathy, but only in male rTg4510 mice. OX2 receptor antagonism induced only short-lived hypnotic responses in female rTg4510 mice and did not improve spatial memory, indicating a tau- and sex-dependent disruption of OX2 receptor signalling. CONCLUSIONS AND IMPLICATIONS: Pharmacologically reducing hyperarousal corrects tau-induced sleep/wake and cognitive deficits. Tauopathy causes sex-dependent disruptions of OX2 receptor signalling/function, which may have implications for choice of hypnotic therapeutics in tauopathies.


Assuntos
Doenças Neurodegenerativas , Receptores de Orexina , Transtornos do Sono-Vigília , Tauopatias , Animais , Feminino , Masculino , Camundongos , Cognição , Modelos Animais de Doenças , Hipnóticos e Sedativos/farmacologia , Camundongos Transgênicos , Orexinas , Sono/fisiologia , Tauopatias/tratamento farmacológico , Tauopatias/genética , Tauopatias/patologia , Vigília/fisiologia , Receptores de Orexina/metabolismo , Antagonistas dos Receptores de Orexina/farmacologia , Antagonistas dos Receptores de Orexina/uso terapêutico
3.
J Sleep Res ; : e14109, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014898

RESUMO

Isolated rapid eye movement (REM) sleep behaviour disorder (iRBD) is a sleep disorder that is characterised by dream enactment episodes during REM sleep. It is the strongest known predictor of α-synuclein-related neurodegenerative disease (αNDD), such that >80% of people with iRBD will eventually develop Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy in later life. More research is needed to understand the trajectory of phenoconversion to each αNDD. Only five 'gold standard' prevalence studies of iRBD in older adults have been undertaken previously, with estimates ranging from 0.74% to 2.01%. The diagnostic recommendations for video-polysomnography (vPSG) to confirm iRBD makes prevalence studies challenging, as vPSG is often unavailable to large cohorts. In Australia, there have been no iRBD prevalence studies, and little is known about the cognitive and motor profiles of Australian people with iRBD. The Island Study Linking Ageing and Neurodegenerative Disease (ISLAND) Sleep Study will investigate the prevalence of iRBD in Tasmania, an island state of Australia, using validated questionnaires and home-based vPSG. It will also explore several cognitive, motor, olfactory, autonomic, visual, tactile, and sleep profiles in people with iRBD to better understand which characteristics influence the progression of iRBD to αNDD. This paper details the ISLAND Sleep Study protocol and presents preliminary baseline results.

4.
Neurology ; 101(22): e2314-e2324, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37816639

RESUMO

BACKGROUND AND OBJECTIVES: There are limited validated biomarkers in Parkinson disease (PD) which substantially hinders the ability to monitor disease progression and consequently measure the efficacy of disease-modifying treatments. Imaging biomarkers, such as vesicular monoamine transporter type 2 (VMAT2) PET, enable enhanced diagnostic accuracy and detect early neurodegenerative changes associated with prodromal PD. This study sought to assess whether 18F-AV-133 VMAT2 PET is sensitive enough to monitor and quantify disease progression over a 2-year window. METHODS: 18F-AV-133 PET scans were performed on participants with PD and REM sleep behavior disorder (RBD) and neurologic controls (NC). All participants were scanned twice ∼26 months apart. Regional tracer retention was calculated with a primary visual cortex reference region and expressed as the standard uptake volume ratio. Regions of interest included caudate, anterior, and posterior putamen. At the time of scanning, participants underwent clinical evaluation including UPDRSMOTOR test, Sniffin' Sticks, and Hospital Anxiety and Depression Score. RESULTS: Over the 26-month interval, a significant decline in PET signal was observed in all 3 regions in participants with PD (N = 26) compared with NC (N = 12), consistent with a decrease in VMAT2 level and ongoing neurodegeneration. Imaging trajectory calculations suggest that the neurodegeneration in PD occurs over ∼33 years [CI: 27.2-39.5], with ∼10.5 years [CI: 9.1-11.3] of degeneration in the posterior putamen before it becomes detectable on a VMAT2 PET scan, a further ∼6.5 years [CI: 1.6-12.7] until symptom onset, and a further ∼3 years [CI: 0.3-8.7] until clinical diagnosis. DISCUSSION: Over a 2-year period, 18F-AV-133 VMAT2 PET was able to detect progression of nigrostriatal degeneration in participants with PD, and it represents a sensitive tool to identify individuals at risk of progression to PD, which are currently lacking using clinical readouts. Trajectory models propose that there is nigrostriatal degeneration occurring for 20 years before clinical diagnosis. These data demonstrate that VMAT2 PET provides a sensitive measure to monitor neurodegenerative progression of PD which has implications for PD diagnostics and subsequently clinical trial patient stratification and monitoring. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that VMAT2 PET can detect patients with Parkinson disease and quantify progression over a 2-year window.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Proteínas Vesiculares de Transporte de Monoamina , Biomarcadores , Progressão da Doença
5.
Proteomics ; : e2300063, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37654087

RESUMO

Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.

6.
Chem Commun (Camb) ; 59(16): 2243-2246, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723107

RESUMO

With the aim of developing the concept of pretargeted click chemistry for the diagnosis of Alzheimer's disease two antibodies specific for amyloid-ß were modified to incorporate trans-cyclooctene functional groups. Two bis(thiosemicarbazone) compounds with pendant 1,2,4,5-tetrazine functional groups were prepared and radiolabelled with positron emitting copper-64. The new copper-64 complexes rapidly react with the trans-cyclooctene functionalized antibodies in a bioorthogonal click reaction and cross the blood-brain barrier in mice.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Radioisótopos de Cobre/química , Linhagem Celular Tumoral , Anticorpos , Peptídeos beta-Amiloides/química , Tomografia por Emissão de Pósitrons/métodos , Imagem Molecular , Ciclo-Octanos/química , Química Click/métodos
7.
Neurotherapeutics ; 19(6): 1966-1975, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36175781

RESUMO

Hyposmia is a prevalent prodromal feature of Parkinson's disease (PD), though the neuropathology that underlies this symptom is poorly understood. Unlike the substantia nigra, the status of metal homeostasis in the olfactory bulbs has not been characterized in PD. Given the increasing interest in metal modulation as a therapeutic avenue in PD, we sought to investigate bulbar metals and the effect of AT434 (formerly PBT434) an orally bioavailable, small molecule modulator of metal homeostasis on hyposmia in a mouse model of parkinsonism (the tau knockout (tau-/-) mouse). 5.5 (pre-hyposmia) and 13.5-month-old (pre-motor) mice were dosed with ATH434 (30 mg/kg/day, oral gavage) for 6 weeks. Animals then underwent behavioral analysis for olfactory and motor phenotypes. The olfactory bulbs and the substantia nigra were then collected and analyzed for metal content, synaptic markers, and dopaminergic cell number. ATH434 was able to prevent the development of hyposmia in young tau-/- mice, which coincided with a reduction in bulbar iron and copper levels, an increase in synaptophysin, and a reduction in soluble α-synuclein. ATH434 was able to prevent the development of motor impairment in aged tau-/- mice, which coincided with a reduction in iron levels and reduced neurodegeneration in the substantia nigra. These data implicate metal dyshomeostasis in parkinsonian olfactory deficits, and champion a potential clinical benefit of ATH434 in both prodromal and clinical stages of PD.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Animais , Camundongos , Anosmia , alfa-Sinucleína/genética , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Substância Negra/metabolismo , Doença de Parkinson/genética , Modelos Animais de Doenças , Ferro
8.
Hum Mol Genet ; 31(12): 1997-2009, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34999772

RESUMO

Tubulin-associated unit (Tau) is a microtubule-associated protein, whose abnormal phosphorylation and deposition in the brain characterizes a range of neurodegenerative diseases called tauopathies. Recent clinical (post-mortem) and pre-clinical evidence suggests that Huntington's disease (HD), an autosomal dominant neurodegenerative disorder, could be considered as a tauopathy. Studies have found the presence of hyperphosphorylated tau, altered tau isoform ratio and aggregated tau in HD brains. However, little is known about the implication of tau in the development of HD pathophysiology, which includes motor, cognitive and affective symptoms. To shine a light on the involvement of tau in HD, our present study aimed at (i) knocking out tau expression and (ii) expressing a transgene encoding mutant human tau in the R6/1 mouse model of HD. We hypothesized that expression of the mutant human tau transgene in HD mice would worsen the HD phenotype, while knocking out endogenous mouse tau in HD mice would improve some behavioral deficits displayed by HD mice. Our data suggest that neither the expression of a tau transgene nor the ablation of tau expression impacted the progression of the HD motor, cognitive and affective phenotypes. Supporting these behavioral findings, we also found that modulating tau expression had no effect on brain weights in HD mice. We also report that expression of the tau transgene increased the weight of WT and HD male mice, whereas tau ablation increased the weight of HD females only. Together, our results indicate that tau might not be as important in regulating the onset and progression of HD symptomatology as previously proposed.


Assuntos
Doença de Huntington , Tauopatias , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Transgênicos , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
9.
J Parkinsons Dis ; 12(1): 105-115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34744051

RESUMO

BACKGROUND: An elevation in iron levels, together with an accumulation of α-synuclein within the oligodendrocytes, are features of the rare atypical parkinsonian disorder, Multiple System Atrophy (MSA). We have previously tested the novel compound ATH434 (formally called PBT434) in preclinical models of Parkinson's disease and shown that it is brain-penetrant, reduces iron accumulation and iron-mediated redox activity, provides neuroprotection, inhibits alpha synuclein aggregation and lowers the tissue levels of alpha synuclein. The compound was also well-tolerated in a first-in-human oral dosing study in healthy and older volunteers with a favorable, dose-dependent pharmacokinetic profile. OBJECTIVE: To evaluate the efficacy of ATH434 in a mouse MSA model. METHODS: The PLP-α-syn transgenic mouse overexpresses α-synuclein, demonstrates oligodendroglial pathology, and manifests motor and non-motor aspects of MSA. Animals were provided ATH434 (3, 10, or 30 mg/kg/day spiked into their food) or control food for 4 months starting at 12 months of age and were culled at 16 months. Western blot was used to assess oligomeric and urea soluble α-synuclein levels in brain homogenates, whilst stereology was used to quantitate the number of nigral neurons and glial cell inclusions (GCIs) present in the substantia nigra pars compacta. RESULTS: ATH434 reduced oligomeric and urea soluble α-synuclein aggregation, reduced the number of GCIs, and preserved SNpc neurons. In vitro experiments suggest that ATH434 prevents the formation of toxic oligomeric "species of synuclein". CONCLUSION: ATH434 is a promising small molecule drug candidate that has potential to move forward to trial for treating MSA.


Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Animais , Modelos Animais de Doenças , Humanos , Ferro/uso terapêutico , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Atrofia de Múltiplos Sistemas/patologia , Ureia , alfa-Sinucleína
11.
J Parkinsons Dis ; 11(4): 1821-1832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366375

RESUMO

BACKGROUND: Gastrointestinal (GI) complications, that severely impact patient quality of life, are a common occurrence in patients with Parkinson's disease (PD). Damage to enteric neurons and the accumulation of alpha-synuclein in the enteric nervous system (ENS) are thought to contribute to this phenotype. Copper or iron chelators, that bind excess or labile metal ions, can prevent aggregation of alpha-synuclein in the brain and alleviate motor-symptoms in preclinical models of PD. OBJECTIVE: We investigated the effect of ATH434 (formally PBT434), a small molecule, orally bioavailable, moderate-affinity iron chelator, on colonic propulsion and whole gut transit in A53T alpha-synuclein transgenic mice. METHODS: Mice were fed ATH434 (30 mg/kg/day) for either 4 months (beginning at ∼15 months of age), after the onset of slowed propulsion ("treatment group"), or for 3 months (beginning at ∼12 months of age), prior to slowed propulsion ("prevention group"). RESULTS: ATH434, given after dysfunction was established, resulted in a reversal of slowed colonic propulsion and gut transit deficits in A53T mice to WT levels. In addition, ATH434 administered from 12 months prevented the slowed bead expulsion at 15 months but did not alter deficits in gut transit time when compared to vehicle-treated A53T mice. The proportion of neurons with nuclear Hu+ translocation, an indicator of neuronal stress in the ENS, was significantly greater in A53T than WT mice, and was reduced in both groups when ATH434 was administered. CONCLUSION: ATH434 can reverse some of the GI deficits and enteric neuropathy that occur in a mouse model of PD, and thus may have potential clinical benefit in alleviating the GI dysfunctions associated with PD.


Assuntos
Gastroenteropatias , Doença de Parkinson , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Gastroenteropatias/etiologia , Gastroenteropatias/prevenção & controle , Camundongos , Camundongos Transgênicos , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/genética
12.
J Extracell Vesicles ; 10(7): e12089, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34012516

RESUMO

Lipid dyshomeostasis is associated with the most common form of dementia, Alzheimer's disease (AD). Substantial progress has been made in identifying positron emission tomography and cerebrospinal fluid biomarkers for AD, but they have limited use as front-line diagnostic tools. Extracellular vesicles (EVs) are released by all cells and contain a subset of their parental cell composition, including lipids. EVs are released from the brain into the periphery, providing a potential source of tissue and disease specific lipid biomarkers. However, the EV lipidome of the central nervous system is currently unknown and the potential of brain-derived EVs (BDEVs) to inform on lipid dyshomeostasis in AD remains unclear. The aim of this study was to reveal the lipid composition of BDEVs in human frontal cortex, and to determine whether BDEVs have an altered lipid profile in AD. Using semi-quantitative mass spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17 lipid classes and 692 lipid molecules. BDEVs were enriched in glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further report that BDEVs are enriched in ether-containing PS lipids, a finding that further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal cortex offered improved detection of dysregulated lipids in AD over global lipid profiling of this brain region.  AD BDEVs had significantly altered glycerophospholipid and sphingolipid levels, specifically increased plasmalogen glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing lipids, and altered amide-linked acyl chain content in sphingomyelin and ceramide lipids relative to CTL. The most prominent alteration was a two-fold decrease in lipid species containing anti-inflammatory/pro-resolving docosahexaenoic acid. The in-depth lipidome analysis provided in this study highlights the advantage of EVs over more complex tissues for improved detection of dysregulated lipids that may serve as potential biomarkers in the periphery.


Assuntos
Doença de Alzheimer/metabolismo , Vesículas Extracelulares/fisiologia , Lobo Frontal/metabolismo , Idoso , Doença de Alzheimer/fisiopatologia , Biomarcadores , Encéfalo/metabolismo , Sistema Nervoso Central , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Glicerofosfolipídeos/metabolismo , Homeostase , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipidômica/métodos , Lipídeos/análise , Masculino , Espectrometria de Massas/métodos , Esfingolipídeos/metabolismo , Tomografia Computadorizada por Raios X/métodos
13.
Brain Commun ; 3(2): fcab028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928245

RESUMO

Plaques that characterize Alzheimer's disease accumulate over 20 years as a result of decreased clearance of amyloid-ß peptides. Such long-lived peptides are subjected to multiple post-translational modifications, in particular isomerization. Using liquid chromatography ion mobility separations mass spectrometry, we characterized the most common isomerized amyloid-ß peptides present in the temporal cortex of sporadic Alzheimer's disease brains. Quantitative assessment of amyloid-ß N-terminus revealed that > 80% of aspartates (Asp-1 and Asp-7) in the N-terminus was isomerized, making isomerization the most dominant post-translational modification of amyloid-ß in Alzheimer's disease brain. Total amyloid-ß1-15 was ∼85% isomerized at Asp-1 and/or Asp-7 residues, with only 15% unmodified amyloid-ß1-15 left in Alzheimer's disease. While amyloid-ß4-15 the next most abundant N-terminus found in Alzheimer's disease brain, was only ∼50% isomerized at Asp-7 in Alzheimer's disease. Further investigations into different biochemically defined amyloid-ß-pools indicated a distinct pattern of accumulation of extensively isomerized amyloid-ß in the insoluble fibrillar plaque and membrane-associated pools, while the extent of isomerization was lower in peripheral membrane/vesicular and soluble pools. This pattern correlated with the accumulation of aggregation-prone amyloid-ß42 in Alzheimer's disease brains. Isomerization significantly alters the structure of the amyloid-ß peptide, which not only has implications for its degradation, but also for oligomer assembly, and the binding of therapeutic antibodies that directly target the N-terminus, where these modifications are located.

14.
Sci Rep ; 10(1): 17631, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097764

RESUMO

Motor deficits in parkinsonism are caused by degeneration of dopaminergic nigral neurons. The success of disease-modifying therapies relies on early detection of the underlying pathological process, leading to early interventions in the disease phenotype. Healthy (n = 16), REM sleep behavior disorder (RBD) (n = 14), dementia with Lewy bodies (n = 10), and Parkinson's disease (PD) (n = 20) participants underwent 18F-AV133 vesicular monoamine transporter type-2 (VMAT2) PET to determine the integrity of the nigrostriatal pathway. Clinical, neurophysiological and neuropsychological testing was conducted to assess parkinsonian symptoms. There was reduced VMAT2 levels in RBD participants in the caudate and putamen, indicating nigrostriatal degeneration. RBD patients also presented with hyposmia and anxiety, non-motor symptoms associated with parkinsonism. 18F-AV133 VMAT2 PET allows identification of underlying nigrostriatal degeneration in RBD patients. These findings align with observations of concurrent non-motor symptoms in PD and RBD participants of the Parkinson's Progression Markers Initiative. Together, these findings suggest that RBD subjects have prodromal parkinsonism supporting the concept of conducting neuroprotective therapeutic trials in RBD-enriched cohorts. Ongoing longitudinal follow-up of these subjects will allow us to determine the time-window of clinical progression.


Assuntos
Transtornos Parkinsonianos/diagnóstico por imagem , Sono REM/fisiologia , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo , Núcleo Caudado , Corpo Estriado , Progressão da Doença , Diagnóstico Precoce , Feminino , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/fisiopatologia , Estudos Longitudinais , Masculino , Testes Neuropsicológicos , Doença de Parkinson/genética , Transtornos Parkinsonianos/fisiopatologia , Tomografia por Emissão de Pósitrons/métodos , Sintomas Prodrômicos , Putamen , Transtorno do Comportamento do Sono REM/complicações , Transtorno do Comportamento do Sono REM/diagnóstico por imagem , Transtorno do Comportamento do Sono REM/fisiopatologia , Sono REM/genética , Proteínas Vesiculares de Transporte de Monoamina/fisiologia
15.
J Parkinsons Dis ; 10(4): 1343-1353, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32986683

RESUMO

Since the initial reports of COVID-19 in December 2019, the world has been gripped by the disastrous acute respiratory disease caused by the SARS-CoV-2 virus. There are an ever-increasing number of reports of neurological symptoms in patients, from severe (encephalitis), to mild (hyposmia), suggesting the potential for neurotropism of SARS-CoV-2. This Perspective investigates the hypothesis that the reliance on self-reporting of hyposmia has resulted in an underestimation of neurological symptoms in COVID-19 patients. While the acute effect of the virus on the nervous system function is vastly overshadowed by the respiratory effects, we propose that it will be important to monitor convalescent individuals for potential long-term implications that may include neurodegenerative sequelae such as viral-associated parkinsonism. As it is possible to identify premorbid harbingers of Parkinson's disease, we propose long-term screening of SARS-CoV-2 cases post-recovery for these expressions of neurodegenerative disease. An accurate understanding of the incidence of neurological complications in COVID-19 requires long-term monitoring for sequelae after remission and a strategized health policy to ensure healthcare systems all over the world are prepared for a third wave of the virus in the form of parkinsonism.


Assuntos
Infecções por Coronavirus/complicações , Transtornos Parkinsonianos/psicologia , Transtornos Parkinsonianos/virologia , Pneumonia Viral/complicações , Agnosia/virologia , COVID-19 , Coinfecção/complicações , Infecções por Coronavirus/psicologia , Humanos , Pandemias , Pneumonia Viral/psicologia
16.
J Extracell Vesicles ; 9(1): 1766822, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32922692

RESUMO

Alzheimer's disease is a progressive neurodegenerative disorder, with the strongest disease-associated changes observed at clinical or end-stage disease. Transcriptomic deregulation of miRNA expression can spread via "horizontal" RNA transfer through extracellular vesicles (EVs) to act in conjunction with proteins, leading to changes in mRNA, which can provide early signals to indicate forthcoming neuropathological changes in the brain. Here, we analysed the small RNA content, in particular, miRNA, contained in brain-derived EVs isolated from the frontal cortex of Alzheimer's subjects (n = 8) and neurological control subjects (n = 9). Brain-derived EVs were found to contain an upregulation of disease-associated miRNA. RNA species from brain-derived EVs were correlated with miRNA profiles obtained from matching total brain homogenate. These results provide a blueprint into the biological pathways potentially effected during disease that may be assisted by brain-derived EV RNA horizontal transfer.We also correlated the miRNA changes in the brain with those detected in peripheral EVs collected from serum of Alzheimer's disease patients (n = 23, and healthy controls, n = 23) and revealed a panel of miRNA that could be used as a liquid brain biopsy. Overall, our study provides the first interrogation of the small RNA contents in brain-derived EVs and how they could be used to understand the early pathological changes in Alzheimer's disease which will benefit the development of an early diagnostic blood test.

17.
J Alzheimers Dis ; 77(4): 1705-1715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925070

RESUMO

BACKGROUND: Alterations in the methionine cycle and abnormal tau phosphorylation are implicated in many neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. rTg4510 mice express mutant human P301L tau and are a model of tau hyperphosphorylation. The cognitive deficit seen in these animals correlates with a burden of hyperphosphorylated tau and is a model to test therapies aimed at lowering phosphorylated tau. OBJECTIVE: This study aimed to increase protein phosphatase 2A activity through supplementation of S-adenosylmethionine and analyze the effect on spatial memory and tau in treated animals. METHODS: 6-month-old rTg4510 mice were treated with 100 mg/kg S-adenosylmethionine by oral gavage for 3 weeks. Spatial recognition memory was tested in the Y-maze. Alterations to phosphorylated tau and protein phosphatase 2A were explored using immunohistochemistry, western blot, and enzyme-linked immunosorbent assays. RESULTS: Treatment with S-adenosylmethionine increased the Y-maze novel arm exploration time and increased both the expression and activity of protein phosphatase 2A. Furthermore, treatment reduced the number of AT8 positive neurons and reduced the expression of phosphorylated tau (Ser202/Thr205). S-adenosylmethionine contributes to multiple pathways in neuronal homeostasis and neurodegeneration. CONCLUSION: This study shows that supplementation with S-adenosylmethionine stabilizes the heterotrimeric form of PP2A resulting in an increase the enzymatic activity, a reduced level of pathological tau, and improved cognition.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/administração & dosagem , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo , Administração Oral , Animais , Disfunção Cognitiva/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Estabilidade Proteica/efeitos dos fármacos
18.
Br J Pharmacol ; 177(3): 656-667, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31655003

RESUMO

BACKGROUND AND PURPOSE: Diacetyl-bis(4-methyl-3-thiosemicarbazonato)copperII (CuII (atsm)) ameliorates neurodegeneration and delays disease progression in mouse models of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), yet the mechanism of action remains uncertain. Promising results were recently reported for separate Phase 1 studies in ALS patients and PD patients. Affected tissue in these disorders shares features of elevated Fe, low glutathione and increased lipid peroxidation consistent with ferroptosis, a novel form of regulated cell death. We therefore evaluated the ability of CuII (atsm) to inhibit ferroptosis. EXPERIMENTAL APPROACH: Ferroptosis was induced in neuronal cell models by inhibition of glutathione peroxidase-4 activity with RSL3 or by blocking cystine uptake with erastin. Cell viability and lipid peroxidation were assessed and the efficacy of CuII (atsm) was compared to the known antiferroptotic compound liproxstatin-1. KEY RESULTS: CuII (atsm) protected against lipid peroxidation and ferroptotic lethality in primary and immortalised neuronal cell models (EC50 : ≈130 nM, within an order of magnitude of liproxstatin-1). NiII (atsm) also prevented ferroptosis with similar potency, whereas ionic CuII did not. In cell-free systems, CuII (atsm) and NiII (atsm) inhibited FeII -induced lipid peroxidation, consistent with these compounds quenching lipid radicals. CONCLUSIONS AND IMPLICATIONS: The antiferroptotic activity of CuII (atsm) could therefore be the disease-modifying mechanism being tested in ALS and PD trials. With potency in vitro approaching that of liproxstatin-1, CuII (atsm) possesses favourable properties such as oral bioavailability and entry into the brain that make it an attractive investigational product for clinical trials of ferroptosis-related diseases.


Assuntos
Esclerose Lateral Amiotrófica , Ferroptose , Doenças Neurodegenerativas , Compostos Organometálicos , Tiossemicarbazonas , Animais , Modelos Animais de Doenças , Humanos , Peroxidação de Lipídeos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Tiossemicarbazonas/farmacologia
19.
Inorg Chem ; 58(7): 4540-4552, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869878

RESUMO

The synthesis of new bis(thiosemicarbazonato)copper(II) complexes featuring polyamine substituents via selective transamination reactions is presented. Polyamines of different lengths, with different ionizable substituent groups, were used to modify and adjust the hydrophilic/lipophilic balance of the copper complexes. The new analogues were radiolabeled with copper-64 and their lipophilicities estimated using distribution coefficients. The cell uptake of the new polyamine complexes was investigated with preliminary in vitro biological studies using a neuroblastoma cancer cell line. The in vivo biodistribution of three of the new analogues was investigated in vivo in mice using positron-emission tomography imaging, and one of the new complexes was compared to [64Cu]Cu(atsm) in an A431 squamous cell carcinoma xenograft model. Modification of the copper complexes with various amine-containing functional groups alters the biodistribution of the complexes in mice. One complex, with a pendent ( N, N-dimethylamino)ethane functional group, displayed tumor uptake similar to that of [64Cu]Cu(atsm) but higher brain uptake, suggesting that this compound has the potential to be of use in the diagnostic brain imaging of tumors and neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Complexos de Coordenação/farmacocinética , Radioisótopos de Cobre/química , Poliaminas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Tiossemicarbazonas/farmacocinética , Animais , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Feminino , Humanos , Ligantes , Camundongos Endogâmicos BALB C , Poliaminas/síntese química , Poliaminas/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química , Distribuição Tecidual
20.
Neurobiol Stress ; 9: 176-187, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30450383

RESUMO

Depression is a highly prevalent psychiatric disorder, yet its etiology is not well understood. The validation of animal models is therefore a critical step towards advancing knowledge about the neurobiology of depression. Psychosocial stress has been promoted as a prospective animal model of depression, however, different protocols exist with variable responses, and further investigations are therefore required. We aimed to characterise the behavioural and body weight responses to the social defeat/overcrowding (SD/OC) model and to explore the effects of the antidepressant fluoxetine and the peroxynitrite scavenger, CuII(atsm), therein. Male C57BL/6JArc mice were exposed to a 19 day SD/OC protocol at two levels of aggression, determined by terminating SD bouts after one, or approximately five social defeat postures. This was followed by a battery of behavioural tests including social interaction test (SIT), locomotor activity (LMA), light-dark box test (LDB), saccharin preference test (SPT) and the forced swim test (FST). Mice were dosed daily with vehicle, fluoxetine (20 mg/kg) or CuII(atsm) (30 mg/kg) throughout the protocol. SD/OC increased body weight compared to controls, which was abolished by fluoxetine and attenuated by CuII(atsm). Weight gain specifically peaked during OC sessions but was not affected by either drug treatment. Fluoxetine reduced the number of defeat postures during fight bouts on some days. SD/OC otherwise failed to elicit depression- or anxiety-like behaviour in the tests measured. These data raise questions over the SD/OC model as an etiological model of depression-related behaviours but highlight the potential of this model for investigations into mechanisms regulating binge eating and weight gain under conditions of chronic social stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...