Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Cell Mater ; 42: 401-414, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34825700

RESUMO

Mesenchymal stem cells (MSCs) are promising cells for regenerative medicine therapies because they can differentiate towards multiple cell lineages. However, the occurrence of cellular senescence and the acquiring of the senescence-associated secretory phenotype (SASP) limit their clinical use. Since the transcription factor TWIST1 influences expansion of MSCs, its role in regulating cellular senescence was investigated. The present study demonstrated that silencing of TWIST1 in MSCs increased the occurrence of senescence, characterised by a SASP profile different from irradiation-induced senescent MSCs. Knowing that senescence alters cellular metabolism, cellular bioenergetics was monitored by using the Seahorse XF apparatus. Both TWIST1-silencing-induced and irradiation-induced senescent MSCs had a higher oxygen consumption rate compared to control MSCs, while TWIST1-silencing-induced senescent MSCs had a low extracellular acidification rate compared to irradiation-induced senescent MSCs. Overall, data indicated how TWIST1 regulation influenced senescence in MSCs and that TWIST1 silencing-induced senescence was characterised by a specific SASP profile and metabolic state.


Assuntos
Células-Tronco Mesenquimais , Fenótipo Secretor Associado à Senescência , Senescência Celular , Metabolismo Energético , Regulação da Expressão Gênica
2.
J Prev Alzheimers Dis ; 4(4): 226-235, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29181487

RESUMO

BACKGROUND: Aging is a highly complex biological process driven by multiple factors. Its progression can partially be influenced by nutritional interventions. Vitamin E is a lipid-soluble anti-oxidant that is investigated as nutritional supplement for its ability to prevent or delay the onset of specific aging pathologies, including neurodegenerative disorders. PURPOSE: We aimed here to investigate the effect of vitamin E during aging progression in a well characterized mouse model for premature aging. METHOD: Xpg-/- animals received diets with low (~2.5 mg/kg feed), medium (75 mg/kg feed) or high (375 mg/kg feed) vitamin E concentration and their phenotype was monitored during aging progression. Vitamin E content was analyzed in the feed, for stability reasons, and in mouse plasma, brain, and liver, for effectiveness of the treatment. Subsequent age-related changes were monitored for improvement by increased vitamin E or worsening by depletion in both liver and nervous system, organs sensitive to oxidative stress. RESULTS: Mice supplemented with high levels of vitamin E showed a delayed onset of age-related body weight decline and appearance of tremors when compared to mice with a low dietary vitamin E intake. DNA damage resulting in liver abnormalities such as changes in polyploidy, was considerably prevented by elevated amounts of vitamin E. Additionally, immunohistochemical analyses revealed that high intake of vitamin E, when compared with low and medium levels of vitamin E in the diet, reduces the number of p53-positive cells throughout the brain, indicative of a lower number of cells dying due to DNA damage accumulated over time. CONCLUSIONS: Our data underline a neuroprotective role of vitamin E in the premature aging animal model used in this study, likely via a reduction of oxidative stress, and implies the importance of improved nutrition to sustain health.


Assuntos
Senilidade Prematura/dietoterapia , Senilidade Prematura/patologia , Encéfalo/patologia , Morte Celular , Suplementos Nutricionais , Vitamina E/administração & dosagem , Senilidade Prematura/metabolismo , Animais , Peso Corporal , Encéfalo/metabolismo , Morte Celular/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Ingestão de Alimentos , Endonucleases/deficiência , Endonucleases/genética , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Tremor/dietoterapia , Tremor/metabolismo , Tremor/patologia , Vitamina E/metabolismo
3.
Nature ; 537(7620): 427-431, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27556946

RESUMO

Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1∆/-) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg-/- (also known as Ercc5-/-) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1∆/- mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1∆/- mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1∆/- mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.


Assuntos
Envelhecimento/genética , Restrição Calórica , Reparo do DNA/genética , Dieta Redutora , Instabilidade Genômica , Animais , Encéfalo/fisiologia , Dano ao DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Endonucleases/deficiência , Endonucleases/genética , Feminino , Masculino , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/prevenção & controle , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...