Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioscience ; 71(10): 1011-1027, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34616235

RESUMO

Nearshore (littoral) habitats of clear lakes with high water quality are increasingly experiencing unexplained proliferations of filamentous algae that grow on submerged surfaces. These filamentous algal blooms (FABs) are sometimes associated with nutrient pollution in groundwater, but complex changes in climate, nutrient transport, lake hydrodynamics, and food web structure may also facilitate this emerging threat to clear lakes. A coordinated effort among members of the public, managers, and scientists is needed to document the occurrence of FABs, to standardize methods for measuring their severity, to adapt existing data collection networks to include nearshore habitats, and to mitigate and reverse this profound structural change in lake ecosystems. Current models of lake eutrophication do not explain this littoral greening. However, a cohesive response to it is essential for protecting some of the world's most valued lakes and the flora, fauna, and ecosystem services they sustain.

2.
Environ Sci Technol ; 55(21): 14946-14956, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34637308

RESUMO

Nitrate concentrations in high-elevation lakes of the Colorado Front Range remain elevated despite declining trends in atmospherically deposited nitrate since 2000. The current source of this elevated nitrate in surface waters remains elusive, given shifts in additional nitrogen sources via glacial inputs and atmospheric ammonium deposition. We present the complete isotopic composition of nitrate (δ15N, δ18O, and Δ17O) from a suite of nitrate-bearing source waters collected during the summers of 2017-2018 from two alpine ecosystems to constrain the provenance of elevated nitrate in surface waters during the summer open-water season. The results indicate a consistent contribution of uncycled atmospheric nitrate throughout the summer (13-23%) to alpine lakes, despite seasonal changes in source water inputs. The balance of nitrate (as high as 87% in late summer) is likely from nitrate production within the catchment via nitrification of reduced nitrogen sources (e.g., thawed soil organic matter and ammonium deposition) and released with rock glacier meltwater. The role of microbially produced nitrate has become increasingly important over time based on historical surface water samples from the mid-90s to present, a trend coincident with increasing ammonium deposition to alpine systems.


Assuntos
Nitratos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Rios , Poluentes Químicos da Água/análise
4.
Ecol Appl ; 31(6): e02353, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34181302

Assuntos
Ecologia
5.
Proc Biol Sci ; 287(1930): 20200304, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32635862

RESUMO

While deposition of reactive nitrogen (N) in the twentieth century has been strongly linked to changes in diatom assemblages in high-elevation lakes, pronounced and contemporaneous changes in other algal groups suggest additional drivers. We explored the origin and magnitude of changes in two mountain lakes from the end of the Little Ice Age at ca 1850, to ca 2010, using lake sediments. We found dramatic changes in algal community abundance and composition. While diatoms remain the most abundant photosynthetic organisms, concentrations of diatom pigments decreased while pigments representing chlorophytes increased 200-300% since ca 1950 and total algal biomass more than doubled. Some algal changes began ca 1900 but shifts in most sedimentary proxies accelerated ca 1950 commensurate with many human-caused changes to the Earth System. In addition to N deposition, aeolian dust deposition may have contributed phosphorus. Strong increases in summer air and surface water temperatures since 1983 have direct and indirect consequences for high-elevation ecosystems. Such warming could have directly enhanced nutrient use and primary production. Indirect consequences of warming include enhanced leaching of nutrients from geologic and cryosphere sources, particularly as glaciers ablate. While we infer causal mechanisms, changes in primary producer communities appear to be without historical precedent and are commensurate with the post-1950 acceleration of global change.


Assuntos
Mudança Climática , Monitoramento Ambiental , Lagos , Biomassa , Diatomáceas , Poeira , Ecossistema , Sedimentos Geológicos , Camada de Gelo , Nitrogênio , Nutrientes , Fósforo , Temperatura
6.
J Geophys Res Biogeosci ; 125(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34336541

RESUMO

Watershed nitrogen (N) budgets provide insights into drivers and solutions for groundwater and surface water N contamination. We constructed a comprehensive N budget for the transboundary Nooksack River Watershed (British Columbia, Canada and Washington, US) using locally-derived data, national statistics and standard parameters. Feed imports for dairy (mainly in the US) and poultry (mainly in Canada) accounted for 30 and 29% of the total N input to the watershed, respectively. Synthetic fertilizer was the next largest source contributing 21% of inputs. Food imports for humans and pets together accounted for 9% of total inputs, lower than atmospheric deposition (10%). N imported by returning salmon representing marine derived nutrients accounted for <0.06 % of total N input. Quantified N export was 80% of total N input, driven by ammonia emission (32% of exports). Animal product export was the second largest output of N (31%) as milk and cattle in the US and poultry products in Canada. Riverine export of N was estimated at 28% of total N export. The commonly used crop nitrogen use efficiency (NUE) metric alone did not provide sufficient information on farming activities but in combination with other criteria such as farm-gate NUE may better represent management efficiency. Agriculture was the primary driver of N inputs to the environment as a result of its regional importance; the N budget information can inform management to minimize N losses. The N budget provides key information for stakeholders across sectors and borders to create environmentally and economically viable and effective solutions.

7.
Environ Manage ; 64(5): 626-639, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31583444

RESUMO

Agricultural emissions are the primary source of ammonia (NH3) deposition in Rocky Mountain National Park (RMNP), a Class I area, that is granted special air quality protections under the Clean Air Act. Between 2014 and 2016, the pilot phase of the Colorado agricultural nitrogen early warning system (CANEWS) was developed for agricultural producers to voluntarily and temporarily minimize emissions of NH3 during periods of upslope winds. The CANEWS was created using trajectory analyses driven by outputs from an ensemble of numerical weather forecasts together with the climatological expertize of human forecasters. Here, we discuss the methods for the CANEWS and offer preliminary analyses of 33 months of the CANEWS based on atmospheric deposition data from two sites in RMNP as well as responses from agricultural producers after warnings were issued. Results showed that the CANEWS accurately predicted 6 of 9 high N deposition weeks at a lower-elevation observation site, but only 4 of 11 high N deposition weeks at a higher-elevation site. Sixty agricultural producers from 39 of Colorado's agricultural operations volunteered for the CANEWS, and a two-way line of communication between agricultural producers and scientists was formed. For each warning issued, an average of 23 producers responded to a postwarning survey. Over 75% of responding CANEWS participants altered their practices after an alert. While the current effort was insufficient to reduce atmospheric deposition, we were encouraged by the collaborative spirit between agricultural, scientific, and resource management communities. Solving a broad and complex social-ecological problem requires both a technological approach, such as the CANEWS, and collaboration and trust from all participants, including agricultural producers, land managers, university researchers, and environmental agencies.


Assuntos
Poluentes Atmosféricos , Compostos de Amônio , Agricultura , Colorado , Monitoramento Ambiental , Humanos , Nitrogênio , Parques Recreativos
8.
Sci Data ; 2: 150008, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977814

RESUMO

Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.

9.
Environ Sci Technol ; 48(24): 14258-65, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25383864

RESUMO

Long-term patterns of stream nitrate export and atmospheric N deposition were evaluated over three decades in Loch Vale, a high-elevation watershed in the Colorado Front Range. Stream nitrate concentrations increased in the early 1990 s, peaked in the mid-2000s, and have since declined by over 40%, coincident with trends in nitrogen oxide emissions over the past decade. Similarities in the timing and magnitude of N deposition provide evidence that stream chemistry is responding to changes in atmospheric deposition. The response to deposition was complicated by a drought in the early 2000s that enhanced N export for several years. Other possible explanations, including forest disturbance, snow depth, or permafrost melting, could not explain patterns in N export. Our results show that stream chemistry responds rapidly to changes in N deposition in high-elevation watersheds, similar to the response observed to changes in sulfur deposition.


Assuntos
Altitude , Nitratos/química , Nitrogênio/química , Movimentos da Água , Mudança Climática , Colorado , Ecossistema , Rios/química
10.
Ecology ; 90(11): 3062-73, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19967862

RESUMO

Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented. We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (> 6 kg N x ha(-1) x yr(-1)) or low (< 2 kg N x ha(-1) x yr(-1)) levels of atmospheric N deposition. High-deposition lakes had higher NO3-N and total N concentrations and higher total N : total P ratios. Concentrations of chlorophyll and seston carbon (C) were 2-2.5 times higher in high-deposition relative to low-deposition lakes, while high-deposition lakes also had higher seston C:N and C:P (but not N:P) ratios. Short-term enrichment bioassays indicated a qualitative shift in the nature of phytoplankton nutrient limitation due to N deposition, as high-deposition lakes had an increased frequency of primary P limitation and a decreased frequency and magnitude of response to N and to combined N and P enrichment. Thus elevated atmospheric N deposition appears to have shifted nutrient supply from a relatively balanced but predominantly N-deficient regime to a more consistently P-limited regime in Colorado alpine lakes. This adds to accumulating evidence that sustained N deposition may have important effects on lake phytoplankton communities and plankton-based food webs by shifting the quantitative and qualitative nature of nutrient limitation.


Assuntos
Atmosfera/química , Água Doce/química , Nitrogênio/química , Nitrogênio/farmacologia , Fitoplâncton/crescimento & desenvolvimento , Ecossistema , Fósforo/química , Fitoplâncton/efeitos dos fármacos , Movimentos da Água
11.
Science ; 326(5954): 835-7, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19892979

RESUMO

Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.


Assuntos
Atmosfera/química , Ecossistema , Água Doce/química , Nitrogênio/análise , Fósforo/análise , Fitoplâncton/fisiologia , Biodiversidade , Biomassa , Colorado , Cadeia Alimentar , Atividades Humanas , Humanos , Nitratos/análise , Noruega , Fitoplâncton/crescimento & desenvolvimento , Suécia , Árvores
12.
Environ Manage ; 44(6): 1033-42, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19449058

RESUMO

Past and present climate has shaped the valued ecosystems currently protected in parks and reserves, but future climate change will redefine these conditions. Continued conservation as climate changes will require thinking differently about resource management than we have in the past; we present some logical steps and tools for doing so. Three critical tenets underpin future management plans and activities: (1) climate patterns of the past will not be the climate patterns of the future; (2) climate defines the environment and influences future trajectories of the distributions of species and their habitats; (3) specific management actions may help increase the resilience of some natural resources, but fundamental changes in species and their environment may be inevitable. Science-based management will be necessary because past experience may not serve as a guide for novel future conditions. Identifying resources and processes at risk, defining thresholds and reference conditions, and establishing monitoring and assessment programs are among the types of scientific practices needed to support a broadened portfolio of management activities. In addition to the control and hedging management strategies commonly in use today, we recommend adaptive management wherever possible. Adaptive management increases our ability to address the multiple scales at which species and processes function, and increases the speed of knowledge transfer among scientists and managers. Scenario planning provides a broad forward-thinking framework from which the most appropriate management tools can be chosen. The scope of climate change effects will require a shared vision among regional partners. Preparing for and adapting to climate change is as much a cultural and intellectual challenge as an ecological challenge.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Estados Unidos
13.
Ecol Appl ; 16(2): 433-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711034

RESUMO

Using an estimated background nitrogen (N) deposition value of 0.5 kg N x ha(-1) x yr(-1) in 1900, and a 19-year record of measured values from Loch Vale (Colorado, USA; NADP site CO98), I reconstructed an N-deposition history using exponential equations that correlated well with EPA-reported NO(x) emissions from Colorado and from the sum of emissions of 11 western states. The mean wet N-deposition values for the period 1950-1964 was approximately 1.5 kg N x ha(-1) x yr(-1), corresponding to the reported time of alteration of diatom assemblages attributed to N deposition in alpine lakes in Rocky Mountain National Park (USA). This value becomes the critical load defining the threshold for ecological change from eutrophication. Thus if an N-deposition threshold for ecological change can be identified, and the date at which that threshold was crossed is known, hindcasting can derive the amount of atmospheric deposition at the time of change, at least for alpine lakes. Independent support for the technique and the deposition amount comes from experimental studies, ecosystem modeling, and paleolimnological records from northern Wyoming (USA).


Assuntos
Poluentes Atmosféricos/análise , Modelos Teóricos , Nitrogênio/análise , Ecossistema , Água Doce , Nitratos/análise , Óxidos de Nitrogênio/análise , Compostos de Amônio Quaternário/análise , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...