Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3466, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710908

RESUMO

RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Vacina BNT162 , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Proteômica , RNA Viral/genética , SARS-CoV-2 , Vacinas Sintéticas , Vacinas de mRNA
2.
Am J Respir Crit Care Med ; 205(1): 46-59, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731593

RESUMO

Rationale: Sepsis is the leading cause of death in adult ICUs. At present, sepsis diagnosis relies on nonspecific clinical features. It could transform clinical care to have immune-cell biomarkers that could predict sepsis diagnosis and guide treatment. For decades, neutrophil phenotypes have been studied in sepsis, but a diagnostic cell subset has yet to be identified. Objectives: To identify an early, specific immune signature of sepsis severity that does not overlap with other inflammatory biomarkers and that distinguishes patients with sepsis from those with noninfectious inflammatory syndrome. Methods: Mass cytometry combined with computational high-dimensional data analysis was used to measure 42 markers on whole-blood immune cells from patients with sepsis and control subjects and to automatically and comprehensively characterize circulating immune cells, which enables identification of novel, disease-specific cellular signatures. Measurements and Main Results: Unsupervised analysis of high-dimensional mass cytometry data characterized previously unappreciated heterogeneity within the CD64+ immature neutrophils and revealed two new subsets distinguished by CD123 and PD-L1 (programmed death ligand 1) expression. These immature neutrophils exhibited diminished activation and phagocytosis functions. The proportion of CD123-expressing neutrophils correlated with clinical severity. Conclusions: This study showed that these two new neutrophil subsets were specific to sepsis and detectable through routine flow cytometry by using seven markers. The demonstration here that a simple blood test distinguishes sepsis from other inflammatory conditions represents a key biological milestone that can be immediately translated into improvements in patient care.


Assuntos
Antígeno B7-H1/sangue , Subunidade alfa de Receptor de Interleucina-3/sangue , Neutrófilos/metabolismo , Sepse/diagnóstico , Biomarcadores/sangue , Estudos de Casos e Controles , Regras de Decisão Clínica , Diagnóstico Diferencial , Citometria de Fluxo , Humanos , Modelos Lineares , Estudos Longitudinais , Receptores de IgG/sangue , Sensibilidade e Especificidade , Sepse/sangue , Sepse/imunologia , Índice de Gravidade de Doença
3.
Elife ; 102021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34350827

RESUMO

For an emerging disease like COVID-19, systems immunology tools may quickly identify and quantitatively characterize cells associated with disease progression or clinical response. With repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel virus before disease-specific knowledge and tools are established. However, single cell analysis tools can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning workflow Tracking Responders EXpanding (T-REX) was created to identify changes in both rare and common cells across human immune monitoring settings. T-REX identified cells with highly similar phenotypes that localized to hotspots of significant change during rhinovirus and SARS-CoV-2 infections. Specialized MHCII tetramer reagents that mark rhinovirus-specific CD4+ cells were left out during analysis and then used to test whether T-REX identified biologically significant cells. T-REX identified rhinovirus-specific CD4+ T cells based on phenotypically homogeneous cells expanding by ≥95% following infection. T-REX successfully identified hotspots of virus-specific T cells by comparing infection (day 7) to either pre-infection (day 0) or post-infection (day 28) samples. Plotting the direction and degree of change for each individual donor provided a useful summary view and revealed patterns of immune system behavior across immune monitoring settings. For example, the magnitude and direction of change in some COVID-19 patients was comparable to blast crisis acute myeloid leukemia patients undergoing a complete response to chemotherapy. Other COVID-19 patients instead displayed an immune trajectory like that seen in rhinovirus infection or checkpoint inhibitor therapy for melanoma. The T-REX algorithm thus rapidly identifies and characterizes mechanistically significant cells and places emerging diseases into a systems immunology context for comparison to well-studied immune changes.


Assuntos
COVID-19/imunologia , Leucemia Mieloide Aguda/imunologia , Melanoma/imunologia , Infecções por Picornaviridae/imunologia , Aprendizado de Máquina não Supervisionado , Adolescente , Adulto , Algoritmos , Linfócitos T CD4-Positivos/imunologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Melanoma/tratamento farmacológico , Neoplasias , Rhinovirus/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Adulto Jovem
4.
bioRxiv ; 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341788

RESUMO

RNA-based vaccines against SARS-CoV-2 are critical to limiting COVID-19 severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. We used single-cell technologies to identify and characterized antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 in longitudinal samples from a cohort of healthy donors. Mass cytometry and machine learning pinpointed a novel expanding, population of antigen-specific non-canonical memory CD4 + and CD8 + T cells. B cell sequencing suggested progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlated with eventual SARS-CoV-2 IgG and a donor lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms reveal an antigen-specific cellular basis of RNA vaccine-based immunity. ONE SENTENCE SUMMARY: Single-cell profiling reveals the cellular basis of the antigen-specific response to the BNT162b2 SARS-CoV-2 RNA vaccine.

5.
Blood ; 138(26): 2874-2885, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34115118

RESUMO

Donor and recipient cytomegalovirus (CMV) serostatus correlate with transplant-related mortality that is associated with reduced survival following allogeneic stem cell transplant (SCT). Prior epidemiologic studies have suggested that CMV seronegative recipients (R-) receiving a CMV-seropositive graft (D+) experience inferior outcomes compared with other serostatus combinations, an observation that appears independent of viral reactivation. We therefore investigated the hypothesis that prior donor CMV exposure irreversibly modifies immunologic function after SCT. We identified a CD4+/CD57+/CD27- T-cell subset that was differentially expressed between D+ and D- transplants and validated results with 120 patient samples. This T-cell subset represents an average of 2.9% (D-/R-), 18% (D-/R+), 12% (D+/R-), and 19.6% (D+/R+) (P < .0001) of the total CD4+ T-cell compartment and stably persists for at least several years post-SCT. Even in the absence of CMV reactivation post-SCT, D+/R- transplants displayed a significant enrichment of these cells compared with D-/R- transplants (P = .0078). These are effector memory cells (CCR7-/CD45RA+/-) that express T-bet, Eomesodermin, granzyme B, secrete Th1 cytokines, and are enriched in CMV-specific T cells. These cells are associated with decreased T-cell receptor diversity (P < .0001) and reduced proportions of major histocompatibility class (MHC) II expressing classical monocytes (P < .0001), myeloid (P = .024), and plasmacytoid dendritic cells (P = .0014). These data describe a highly expanded CD4+ T-cell population and putative mechanisms by which prior donor or recipient CMV exposure may create a lasting immunologic imprint following SCT, providing a rationale for using D- grafts for R- transplant recipients.


Assuntos
Antígenos CD4/imunologia , Antígenos CD57/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células T de Memória/imunologia , Antígenos CD4/análise , Linfócitos T CD4-Positivos/imunologia , Antígenos CD57/análise , Células Cultivadas , Citomegalovirus/isolamento & purificação , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/imunologia , Humanos , Doadores de Tecidos , Transplante Homólogo/efeitos adversos
6.
Cytometry A ; 99(9): 946-953, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33960644

RESUMO

Fluorescent cell barcoding (FCB) enables efficient collection of tens to hundreds of flow cytometry samples by covalently marking cells with varying concentration of spectrally distinct dyes. A key consideration in FCB is to balance the density of dye barcodes, the complexity of cells in the sample, and the desired accuracy of the debarcoding. Unfortunately, barcoding bench and computational methods have not benefited from the high dimensional revolution in cytometry due to a lack of automated computational tools that effectively balance these common cytometry needs. DebarcodeR addresses these unmet needs by providing a framework for computational debarcoding augmented by improvements to experimental methods. Adaptive regression modeling accounted for differential dye uptake between different cell types and Gaussian mixture modeling provided a robust method to probabilistically assign cells to samples. Assignment tolerance parameters are available to allow users to balance high cell recovery with accurate assignments. Improvements to experimental methods include: (1) inclusion of an "external standard" control where a pool of all cells was stained a single level of each barcoding dyes and (2) an "internal standard" where each cell is stained with a single level of a separate dye. DebarcodeR significantly improved speed, accuracy, and reproducibility of FCB while avoiding selective loss of unusual cell subsets when debarcoding microtiter plates of cell lines and heterogenous mixtures of primary cells. DebarcodeR is available on Github as an R package that works with flowCore and Cytoverse packages at github.com/cytolab/DebarcodeR.


Assuntos
Corantes Fluorescentes , Linhagem Celular , Citometria de Fluxo , Reprodutibilidade dos Testes
7.
J Immunol ; 206(6): 1127-1139, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33558372

RESUMO

T effector cells promote inflammation in asthmatic patients, and both Th2 and Th17 CD4 T cells have been implicated in severe forms of the disease. The metabolic phenotypes and dependencies of these cells, however, remain poorly understood in the regulation of airway inflammation. In this study, we show the bronchoalveolar lavage fluid of asthmatic patients had markers of elevated glucose and glutamine metabolism. Further, peripheral blood T cells of asthmatics had broadly elevated expression of metabolic proteins when analyzed by mass cytometry compared with healthy controls. Therefore, we hypothesized that glucose and glutamine metabolism promote allergic airway inflammation. We tested this hypothesis in two murine models of airway inflammation. T cells from lungs of mice sensitized with Alternaria alternata extract displayed genetic signatures for elevated oxidative and glucose metabolism by single-cell RNA sequencing. This result was most pronounced when protein levels were measured in IL-17-producing cells and was recapitulated when airway inflammation was induced with house dust mite plus LPS, a model that led to abundant IL-4- and IL-17-producing T cells. Importantly, inhibitors of the glucose transporter 1 or glutaminase in vivo attenuated house dust mite + LPS eosinophilia, T cell cytokine production, and airway hyperresponsiveness as well as augmented the immunosuppressive properties of dexamethasone. These data show that T cells induce markers to support metabolism in vivo in airway inflammation and that this correlates with inflammatory cytokine production. Targeting metabolic pathways may provide a new direction to protect from disease and enhance the effectiveness of steroid therapy.


Assuntos
Asma/tratamento farmacológico , Dexametasona/farmacologia , Transportador de Glucose Tipo 1/antagonistas & inibidores , Glutaminase/antagonistas & inibidores , Imunossupressores/farmacologia , Adulto , Alternaria/imunologia , Animais , Asma/sangue , Asma/imunologia , Biomarcadores/análise , Biomarcadores/metabolismo , Glicemia/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Casos e Controles , Células Cultivadas , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Transportador de Glucose Tipo 1/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Voluntários Saudáveis , Humanos , Imunossupressores/uso terapêutico , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Cultura Primária de Células , Pyroglyphidae/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo , Adulto Jovem
8.
bioRxiv ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32766581

RESUMO

For an emerging disease like COVID-19, systems immunology tools may quickly identify and quantitatively characterize cells associated with disease progression or clinical response. With repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel virus before disease specific knowledge and tools are established. However, single cell analysis tools can struggle to reveal rare cells that are under 0.1% of the population. Here, the machine learning workflow Tracking Responders Expanding (T-REX) was created to identify changes in both very rare and common cells in diverse human immune monitoring settings. T-REX identified cells that were highly similar in phenotype and localized to hotspots of significant change during rhinovirus and SARS-CoV-2 infections. Specialized reagents used to detect the rhinovirus-specific CD4+ cells, MHCII tetramers, were not used during unsupervised analysis and instead 'left out' to serve as a test of whether T-REX identified biologically significant cells. In the rhinovirus challenge study, T-REX identified virus-specific CD4+ T cells based on these cells being a distinct phenotype that expanded by ≥95% following infection. T-REX successfully identified hotspots containing virus-specific T cells using pairs of samples comparing Day 7 of infection to samples taken either prior to infection (Day 0) or after clearing the infection (Day 28). Mapping pairwise comparisons in samples according to both the direction and degree of change provided a framework to compare systems level immune changes during infectious disease or therapy response. This revealed that the magnitude and direction of systemic immune change in some COVID-19 patients was comparable to that of blast crisis acute myeloid leukemia patients undergoing induction chemotherapy and characterized the identity of the immune cells that changed the most. Other COVID-19 patients instead matched an immune trajectory like that of individuals with rhinovirus infection or melanoma patients receiving checkpoint inhibitor therapy. T-REX analysis of paired blood samples provides an approach to rapidly identify and characterize mechanistically significant cells and to place emerging diseases into a systems immunology context.

9.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573435

RESUMO

A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and automated, identifies phenotypically distinct cell populations, and determines whether these populations stratify patient survival. With a pilot mass cytometry dataset of 2 million cells from 28 glioblastomas, RAPID identified tumor cells whose abundance independently and continuously stratified patient survival. Statistical validation within the workflow included repeated runs of stochastic steps and cell subsampling. Biological validation used an orthogonal platform, immunohistochemistry, and a larger cohort of 73 glioblastoma patients to confirm the findings from the pilot cohort. RAPID was also validated to find known risk stratifying cells and features using published data from blood cancer. Thus, RAPID provides an automated, unsupervised approach for finding statistically and biologically significant cells using cytometry data from patient samples.


Assuntos
Glioblastoma/fisiopatologia , Aprendizado de Máquina não Supervisionado , Algoritmos , Humanos , Projetos Piloto , Células Tumorais Cultivadas
10.
Curr Protoc Cytom ; 93(1): e71, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32250555

RESUMO

This article presents a single experiment designed to introduce a trainee to multiple advanced bench and analysis techniques, including high-dimensional cytometry, profiling cell signaling networks, functional assays with primary human tissue, and single-cell analysis with machine learning tools. The trainee is expected to have only minimal laboratory experience and is not required to have any prior training in flow cytometry, immunology, or data science. This article aims to introduce the advanced research areas with a design that is robust enough that novice trainees will succeed, flexible enough to allow some project customization, and fundamental enough that the skills and knowledge gained will provide a template for future experiments. For advanced users, the updated phospho-flow protocol and the established controls, best practices, and expected outcomes presented here also provide a framework for adapting these tools in new areas with unexplored biology. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Phospho-protein stimulation and mass cytometry data collection Support Protocol: Analysis of signaling mass cytometry data.


Assuntos
Células/metabolismo , Análise de Dados , Educação , Citometria de Fluxo/métodos , Automação , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...