Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 218: 116882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32439539

RESUMO

Neural oscillations in auditory cortex are argued to support parsing and representing speech constituents at their corresponding temporal scales. Yet, how incoming sensory information interacts with ongoing spontaneous brain activity, what features of the neuronal microcircuitry underlie spontaneous and stimulus-evoked spectral fingerprints, and what these fingerprints entail for stimulus encoding, remain largely open questions. We used a combination of human invasive electrophysiology, computational modeling and decoding techniques to assess the information encoding properties of brain activity and to relate them to a plausible underlying neuronal microarchitecture. We analyzed intracortical auditory EEG activity from 10 patients while they were listening to short sentences. Pre-stimulus neural activity in early auditory cortical regions often exhibited power spectra with a shoulder in the delta range and a small bump in the beta range. Speech decreased power in the beta range, and increased power in the delta-theta and gamma ranges. Using multivariate machine learning techniques, we assessed the spectral profile of information content for two aspects of speech processing: detection and discrimination. We obtained better phase than power information decoding, and a bimodal spectral profile of information content with better decoding at low (delta-theta) and high (gamma) frequencies than at intermediate (beta) frequencies. These experimental data were reproduced by a simple rate model made of two subnetworks with different timescales, each composed of coupled excitatory and inhibitory units, and connected via a negative feedback loop. Modeling and experimental results were similar in terms of pre-stimulus spectral profile (except for the iEEG beta bump), spectral modulations with speech, and spectral profile of information content. Altogether, we provide converging evidence from both univariate spectral analysis and decoding approaches for a dual timescale processing infrastructure in human auditory cortex, and show that it is consistent with the dynamics of a simple rate model.


Assuntos
Córtex Auditivo/fisiologia , Simulação por Computador , Percepção da Fala/fisiologia , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador
2.
Neuroimage ; 162: 322-343, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28882629

RESUMO

Investigations of the neural basis of consciousness have greatly benefited from protocols that involve the presentation of stimuli at perceptual threshold, enabling the assessment of the patterns of brain activity that correlate with conscious perception, independently of any changes in sensory input. However, the comparison between perceived and unperceived trials would be expected to reveal not only the core neural substrate of a particular conscious perception, but also aspects of brain activity that facilitate, hinder or tend to follow conscious perception. We take a step towards the resolution of these confounds by combining an analysis of neural responses observed during the presentation of faces partially masked by Continuous Flash Suppression, and those responses observed during the unmasked presentation of faces and other images in the same subjects. We employed multidimensional classifiers to decode physical properties of stimuli or perceptual states from spectrotemporal representations of electrocorticographic signals (1071 channels in 5 subjects). Neural activity in certain face responsive areas located in both the fusiform gyrus and in the lateral-temporal/inferior-parietal cortex discriminated seen vs. unseen faces in the masked paradigm and upright faces vs. other categories in the unmasked paradigm. However, only the former discriminated upright vs. inverted faces in the unmasked paradigm. Our results suggest a prominent role for the fusiform gyrus in the configural perception of faces, and possibly other objects that are holistically processed. More generally, we advocate comparative analysis of neural recordings obtained during different, but related, experimental protocols as a promising direction towards elucidating the functional specificities of the patterns of neural activation that accompany our conscious experiences.


Assuntos
Estado de Consciência/fisiologia , Reconhecimento Facial/fisiologia , Mascaramento Perceptivo/fisiologia , Adulto , Mapeamento Encefálico/métodos , Eletrocorticografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Lobo Temporal/fisiologia
4.
PLoS Comput Biol ; 10(5): e1003574, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784237

RESUMO

High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of hyperpolarizing, post-inhibitory rebound is not elicited and factors i) and ii) dominate, yielding lower synchrony in GIF networks than in IF networks.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Simulação por Computador , Limiar Diferencial/fisiologia , Condutividade Elétrica , Humanos
5.
PLoS One ; 9(1): e84037, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465391

RESUMO

The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized over multiple scales of time-frequency resolution. Our approach provides an original way to utilize the discrete wavelet transform to process instantaneous rate functions derived from spike trains, and select relevant wavelet coefficients through statistical analysis. Our method uncovered localized features within olfactory projection neuron (PN) responses in the moth antennal lobe coding for the presence of an odor mixture and the concentration of single component odorants, but not for compound identities. We found that odor mixtures evoked earlier responses in biphasic response type PNs compared to single components, which led to differences in the instantaneous firing rate functions with their signal power spread across multiple frequency bands (ranging from 0 to 45.71 Hz) during a time window immediately preceding behavioral response latencies observed in insects. Odor concentrations were coded in excited response type PNs both in low frequency band differences (2.86 to 5.71 Hz) during the stimulus and in the odor trace after stimulus offset in low (0 to 2.86 Hz) and high (22.86 to 45.71 Hz) frequency bands. These high frequency differences in both types of PNs could have particular relevance for recruiting cellular activity in higher brain centers such as mushroom body Kenyon cells. In contrast, neurons in the specialized pheromone-responsive area of the moth antennal lobe exhibited few stimulus-dependent differences in temporal response features. These results provide interesting insights on early insect olfactory processing and introduce a novel comparative approach for spike train analysis applicable to a variety of neuronal data sets.


Assuntos
Antenas de Artrópodes/fisiologia , Animais , Mariposas , Neurônios/citologia , Neurônios/fisiologia , Odorantes , Condutos Olfatórios/fisiologia , Olfato/fisiologia
6.
Front Neuroeng ; 5: 6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529799

RESUMO

Neural responses to odor blends often exhibit non-linear interactions to blend components. The first olfactory processing center in insects, the antennal lobe (AL), exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth Manduca sexta with those generated using a population-based computational model constructed from the morphologically based connectivity pattern of projection neurons (PNs) and local interneurons (LNs) with randomized connection probabilities from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition) exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.

7.
J Physiol Paris ; 104(1-2): 91-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19913095

RESUMO

Spike timing-dependent plasticity (STDP) is a form of Hebbian learning which is thought to underlie structure formation during development, and learning and memory in later life. In this paper we show that the intrinsic properties of the postsynaptic neuron might have a deep influence on STDP dynamics by shaping the causal correlation between the pre- and the postsynaptic spike trains. The cell-specific effect of STDP is particularly evident in the presence of an oscillatory component in a cell input. In this case, the cell-specific phase response to an oscillatory modulation biases the oscillating afferents towards potentiation or depression, depending upon the intrinsic dynamics of the postsynaptic neuron and the period of the modulation.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Humanos , Rede Nervosa/fisiologia , Dinâmica não Linear , Fatores de Tempo
8.
PLoS One ; 5(12): e15023, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203387

RESUMO

Neurons react differently to incoming stimuli depending upon their previous history of stimulation. This property can be considered as a single-cell substrate for transient memory, or context-dependent information processing: depending upon the current context that the neuron "sees" through the subset of the network impinging on it in the immediate past, the same synaptic event can evoke a postsynaptic spike or just a subthreshold depolarization. We propose a formal definition of History-Dependent Excitability (HDE) as a measure of the propensity to firing in any moment in time, linking the subthreshold history-dependent dynamics with spike generation. This definition allows the quantitative assessment of the intrinsic memory for different single-neuron dynamics and input statistics. We illustrate the concept of HDE by considering two general dynamical mechanisms: the passive behavior of an Integrate and Fire (IF) neuron, and the inductive behavior of a Generalized Integrate and Fire (GIF) neuron with subthreshold damped oscillations. This framework allows us to characterize the sensitivity of different model neurons to the detailed temporal structure of incoming stimuli. While a neuron with intrinsic oscillations discriminates equally well between input trains with the same or different frequency, a passive neuron discriminates better between inputs with different frequencies. This suggests that passive neurons are better suited to rate-based computation, while neurons with subthreshold oscillations are advantageous in a temporal coding scheme. We also address the influence of intrinsic properties in single-cell processing as a function of input statistics, and show that intrinsic oscillations enhance discrimination sensitivity at high input rates. Finally, we discuss how the recognition of these cell-specific discrimination properties might further our understanding of neuronal network computations and their relationships to the distribution and functional connectivity of different neuronal types.


Assuntos
Memória , Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Biofísica/métodos , Simulação por Computador , Humanos , Modelos Lineares , Modelos Teóricos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Neurônios/metabolismo , Oscilometria/métodos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA