Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 146: 78-84, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29360581

RESUMO

The PR-1 proteins (pathogenesis-related protein 1) are involved in plant defense mechanisms against various pathogens. The genome of cacao (Theobroma cacao) encodes 14 PR-1 proteins, named TcPR-1a to TcPR-1n. Two of them, TcPR-1f and TcPR-1g, have a C-terminal expansion with high similarity to protein kinase domains, suggesting a receptor-like kinase (RLK) protein architecture. Moreover, TcPR-1g is highly expressed during cacao response to Witches' Broom Disease, caused by the fungus Moniliopthora perniciosa. Here we describe a structural genomics approach to clone, express and purify the kinase domains of TcPR-1f and TcPR-1g. Escherichia coli BL21(DE3)-R3 cells were used for protein expression and co-expression of Lambda Protein Phosphatase was critical for successfully obtaining soluble recombinant protein. We expect that the ability to express and purify the kinase domains of TcPR-1f and TcPR-1g will further our understanding of the role these proteins play during cacao defense response.


Assuntos
Cacau/genética , Clonagem Molecular/métodos , Proteínas de Plantas/genética , Sequência de Aminoácidos , Cacau/química , Escherichia coli/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência
2.
Biochem Biophys Res Commun ; 466(4): 629-36, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26367180

RESUMO

Thaumatin-like proteins (TLPs) are found in diverse eukaryotes. Plant TLPs, known as Pathogenicity Related Protein (PR-5), are considered fungal inhibitors. However, genes encoding TLPs are frequently found in fungal genomes. In this work, we have identified that Moniliophthora perniciosa, a basidiomycete pathogen that causes the Witches' Broom Disease (WBD) of cacao, presents thirteen putative TLPs from which four are expressed during WBD progression. One of them is similar to small TLPs, which are present in phytopathogenic basidiomycete, such as wheat stem rust fungus Puccinia graminis. Fungi genomes annotation and phylogenetic data revealed a larger number of TLPs in basidiomycetes when comparing with ascomycetes, suggesting that these proteins could be involved in specific traits of mushroom-forming species. Based on the present data, we discuss the contribution of TLPs in the combat against fungal competitors and hypothesize a role of these proteins in M. perniciosa pathogenicity.


Assuntos
Agaricales/genética , Agaricales/patogenicidade , Cacau/microbiologia , Proteínas Fúngicas/genética , Genoma Fúngico , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Proteínas Fúngicas/fisiologia , Expressão Gênica , Dados de Sequência Molecular , Família Multigênica , Filogenia , RNA Fúngico/genética , Homologia de Sequência de Aminoácidos , Virulência/genética , Virulência/fisiologia
3.
Theor Appl Genet ; 126(10): 2451-65, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23832048

RESUMO

Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2(UC)) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning.


Assuntos
Resistência à Doença/genética , Phaseolus/genética , Phaseolus/microbiologia , Doenças das Plantas/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética , Cromossomos de Plantas/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Ligação Genética , Marcadores Genéticos , Genótipo , Humanos , Repetições de Microssatélites/genética , Phaseolus/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Reação em Cadeia da Polimerase , Polimorfismo Genético , Glycine max/genética , Sintenia/genética
4.
BMC Genet ; 13: 50, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22738188

RESUMO

BACKGROUND: Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. RESULTS: QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNAxCAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTLxenvironment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16%-22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. CONCLUSIONS: The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Phaseolus/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Cruzamentos Genéticos , Interação Gene-Ambiente , Ligação Genética , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...