Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Quantum Sci Technol ; 9(3): 035016, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38680502

RESUMO

We realise an intrinsic optically pumped magnetic gradiometer based on non-linear magneto-optical rotation. We show that our sensor can reach a gradiometric sensitivity of 18 fT cm-1Hz-1 and can reject common mode homogeneous magnetic field noise with up to 30 dB attenuation. We demonstrate that our magnetic field gradiometer is sufficiently sensitive and resilient to be employed in biomagnetic applications. In particular, we are able to record the auditory evoked response of the human brain, and to perform real-time magnetocardiography in the presence of external magnetic field disturbances. Our gradiometer provides complementary capabilities in human biomagnetic sensing to optically pumped magnetometers, and opens new avenues in the detection of human biomagnetism.

2.
Sci Rep ; 13(1): 19432, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37940655

RESUMO

We numerically study the formation of vortex clusters in trapped Bose-Einstein condensates where vortices are initially imprinted in a line. We show that such a system exhibits a rich phenomenology depending on the distance at which the vortices are imprinted and their number. In particular we observe that it is possible to obtain systems of twin vortex clusters, twin vortex clusters with orbiting satellite vortices, and triplets of clusters. By using a clustering algorithm we are able to quantitatively describe the formation and dynamics of the clusters. We finally utilise an analytical model to determine the range of parameters for which the clustering occurs. Our work sets the stage for possible experimental implementations where the formation of vortex clusters and more exotic bound states of vortices could be observed.

3.
Neuroimage ; 264: 119747, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403733

RESUMO

Magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has been hailed as the future of electrophysiological recordings from the human brain. In this work, we investigate how the dimensions of the sensing volume (the vapour cell) affect the performance of both a single OPM-MEG sensor and a multi-sensor OPM-MEG system. We consider a realistic noise model that accounts for background brain activity and residual noise. By using source reconstruction metrics such as localization accuracy and time-course reconstruction accuracy, we demonstrate that the best overall sensitivity and reconstruction accuracy are achieved with cells that are significantly longer and wider that those of the majority of current commercial OPM sensors. Our work provides useful tools to optimise the cell dimensions of OPM sensors in a wide range of environments.


Assuntos
Mapeamento Encefálico , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia
4.
Neuroimage ; 226: 117497, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33132074

RESUMO

Optically Pumped Magnetometers (OPMs) have been hailed as the future of human magnetoencephalography, as they enable a level of flexibility and adaptability that cannot be obtained with systems based on superconductors. While OPM sensors are already commercially available, there is plenty of room for further improvements and customization. In this work, we detected auditory evoked brain fields using an OPM based on the nonlinear magneto-optical rotation (NMOR) technique. Our sensor head, containing only optical and non-magnetizable elements, is connected to an external module including all the electronic components, placed outside the magnetically shielded room. The use of the NMOR allowed us to detect the brain signals in non-zero magnetic field environments. In particular, we were able to detect auditory evoked fields in a background field of 70 nT. We benchmarked our sensor with conventional SQUID sensors, showing comparable performance. We further demonstrated that our sensor can be employed to detect modulations of brain oscillations in the alpha band. Our results are a promising stepping-stone towards the realization of resilient OPM-based magnetoencephalography systems that do not require active compensation.


Assuntos
Encéfalo/fisiologia , Desenho de Equipamento , Potenciais Evocados Auditivos/fisiologia , Magnetoencefalografia/instrumentação , Adulto , Humanos , Masculino
5.
Phys Rev Lett ; 125(2): 020403, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701314

RESUMO

We experimentally realize a method to produce nonequilibrium Bose-Einstein condensates with condensed fraction exceeding those of equilibrium samples with the same parameters. To do this, we immerse an ultracold Bose gas of ^{87}Rb in a cloud of ^{39}K with substantially higher temperatures, providing a controlled source of dissipation. By combining the action of the dissipative environment with evaporative cooling, we are able to progressively distil the nonequilibrium Bose-Einstein condensate from the thermal cloud. We show that by increasing the strength of the dissipation it is even possible to produce condensates above the critical temperature. We finally demonstrate that our out-of-equilibrium samples are long lived and do not reach equilibrium in a time that is accessible for our experiment. Due to its high degree of control, our distillation process is a promising tool for the engineering of open quantum systems.

6.
Sci Rep ; 9(1): 1267, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718734

RESUMO

We numerically study a matter wave interferometer realized by splitting a trapped Bose-Einstein condensate with phase imprinting. We show that a simple step-like imprinting pattern rapidly decays into a string of vortices that can generate opposite velocities on the two halves of the condensate. We first study in detail the splitting and launching effect of these vortex structures, whose functioning resembles the one of a conveyor belt, and we show that the initial exit velocity along the vortex conveyor belt can be controlled continuously by adjusting the vortex distance. We finally characterize the complete interferometric sequence, demonstrating how the phase of the resulting interference fringe can be used to measure an external acceleration. The proposed scheme has the potential to be developed into compact and high precision accelerometers.

7.
Opt Express ; 26(18): 22783-22792, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184933

RESUMO

Multi-core optical fibers are readily used in endoscopic devices to transmit classical images. As an extension to the quantum domain, we study the transmission of the spatial quantum fluctuations of light through a conduit made of the ordered packing of thousands of fibers. Starting from twin beams that are correlated in their local intensity fluctuations, we show that, in the limit of a high density of constituent fiber cores, the intensity-difference squeezing present in arbitrary matching regions of the beams is preserved when one of the beams is sent through the conduit. The capability of using fiber bundles to transport quantum information encoded in the spatial degrees of freedom could bring guided-light technology to the emergent field of quantum imaging.

8.
Opt Express ; 25(17): 19701-19710, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29041658

RESUMO

We use a coherent fiber bundle to demonstrate the endoscopic absorption imaging of quantum gases. We show that the fiber bundle introduces spurious noise in the picture mainly due to the strong core-to-core coupling. By direct comparison with free-space pictures, we observe that there is a maximum column density that can be reliably measured using our fiber bundle, and we derive a simple criterion to estimate it. We demonstrate that taking care of not exceeding such maximum, we can retrieve exact quantitative information about the atomic system, making this technique appealing for systems requiring isolation form the environment.

9.
Phys Rev Lett ; 119(15): 150403, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077431

RESUMO

Jones-Roberts solitons are the only known class of stable dark solitonic solutions of the nonlinear Schrödinger equation in two and three dimensions. They feature a distinctive elongated elliptical shape that allows them to travel without change of form. By imprinting a triangular phase pattern, we experimentally generate two-dimensional Jones-Roberts solitons in a three-dimensional atomic Bose-Einstein condensate. We monitor their dynamics, observing that this kind of soliton is indeed not affected by dynamic (snaking) or thermodynamic instabilities, that instead make other classes of dark solitons unstable in dimensions higher than one. Our results confirm the prediction that Jones-Roberts solitons are stable solutions of the nonlinear Schrödinger equation and promote them for applications beyond matter wave physics, like energy and information transport in noisy and inhomogeneous environments.

10.
Science ; 349(6254): 1317-21, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26383948

RESUMO

Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications.

11.
Phys Rev Lett ; 113(21): 215301, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25479499

RESUMO

We study the thermodynamic properties of a 2D array of coupled one-dimensional Bose gases. The system is realized with ultracold bosonic atoms loaded in the potential tubes of a two-dimensional optical lattice. For negligible coupling strength, each tube is an independent weakly interacting 1D Bose gas featuring Tomonaga Luttinger liquid behavior. By decreasing the lattice depth, we increase the coupling strength between the 1D gases and allow for the phase transition into a 3D condensate. We extract the phase diagram for such a system and compare our results with theoretical predictions. Because of the high effective mass across the periodic potential and the increased 1D interaction strength, the phase transition is shifted to large positive values of the chemical potential. Our results are prototypical to a variety of low-dimensional systems, where the coupling between the subsystems is realized in a higher spatial dimension such as coupled spin chains in magnetic insulators.

12.
Phys Rev Lett ; 107(16): 160403, 2011 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22107370

RESUMO

We measure the temporal pair correlation function g(2)(τ) of a trapped gas of bosons above and below the critical temperature for Bose-Einstein condensation. The measurement is performed in situ by using a local, time-resolved single-atom sensitive probing technique. Third- and fourth-order correlation functions are also extracted. We develop a theoretical model and compare it with our experimental data, finding good quantitative agreement. We discuss, finally, the role of interactions. Our results promote temporal correlations as new observables to study the dynamical evolution of ultracold quantum gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...