Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Phys Rev Lett ; 132(15): 151801, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683006

RESUMO

We present a measurement of η production from neutrino interactions on argon with the MicroBooNE detector. The modeling of resonant neutrino interactions on argon is a critical aspect of the neutrino oscillation physics program being carried out by the DUNE and Short Baseline Neutrino programs. η production in neutrino interactions provides a powerful new probe of resonant interactions, complementary to pion channels, and is particularly suited to the study of higher-order resonances beyond the Δ(1232). We measure a flux-integrated cross section for neutrino-induced η production on argon of 3.22±0.84(stat)±0.86(syst) 10^{-41} cm^{2}/nucleon. By demonstrating the successful reconstruction of the two photons resulting from η production, this analysis enables a novel calibration technique for electromagnetic showers in GeV accelerator neutrino experiments.

2.
Phys Rev Lett ; 132(4): 041801, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335355

RESUMO

We present the first search for heavy neutral leptons (HNLs) decaying into νe^{+}e^{-} or νπ^{0} final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab's main injector corresponding to a total exposure of 7.01×10^{20} protons on target. We set upper limits at the 90% confidence level on the mixing parameter |U_{µ4}|^{2} in the mass ranges 10≤m_{HNL}≤150 MeV for the νe^{+}e^{-} channel and 150≤m_{HNL}≤245 MeV for the νπ^{0} channel, assuming |U_{e4}|^{2}=|U_{τ4}|^{2}=0. These limits represent the most stringent constraints in the mass range 35

3.
Phys Rev Lett ; 131(10): 101802, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37739352

RESUMO

We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved.

4.
Eur Phys J C Part Fields ; 83(9): 782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680254

RESUMO

The T2K experiment presents new measurements of neutrino oscillation parameters using 19.7(16.3)×1020 protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional 4.7×1020 POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on sin2θ13 and the impact of priors on the δCP measurement. Both analyses prefer the normal mass ordering and upper octant of sin2θ23 with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on sin2θ13 from reactors, sin2θ23=0.561-0.032+0.021 using Feldman-Cousins corrected intervals, and Δm322=2.494-0.058+0.041×10-3eV2 using constant Δχ2 intervals. The CP-violating phase is constrained to δCP=-1.97-0.70+0.97 using Feldman-Cousins corrected intervals, and δCP=0,π is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than 2σ credible level using a flat prior in δCP, and just below 2σ using a flat prior in sinδCP. When the external constraint on sin2θ13 is removed, sin2θ13=28.0-6.5+2.8×10-3, in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses.

5.
Phys Rev Lett ; 130(23): 231802, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354393

RESUMO

We present the first measurement of the cross section of Cabibbo-suppressed Λ baryon production, using data collected with the MicroBooNE detector when exposed to the neutrinos from the main injector beam at the Fermi National Accelerator Laboratory. The data analyzed correspond to 2.2×10^{20} protons on target running in neutrino mode, and 4.9×10^{20} protons on target running in anti-neutrino mode. An automated selection is combined with hand scanning, with the former identifying five candidate Λ production events when the signal was unblinded, consistent with the GENIE prediction of 5.3±1.1 events. Several scanners were employed, selecting between three and five events, compared with a prediction from a blinded Monte Carlo simulation study of 3.7±1.0 events. Restricting the phase space to only include Λ baryons that decay above MicroBooNE's detection thresholds, we obtain a flux averaged cross section of 2.0_{-1.7}^{+2.2}×10^{-40} cm^{2}/Ar, where statistical and systematic uncertainties are combined.


Assuntos
Mésons , Prótons , Simulação por Computador , Método de Monte Carlo
6.
Phys Rev Lett ; 130(1): 011801, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36669216

RESUMO

We present a search for eV-scale sterile neutrino oscillations in the MicroBooNE liquid argon detector, simultaneously considering all possible appearance and disappearance effects within the 3+1 active-to-sterile neutrino oscillation framework. We analyze the neutrino candidate events for the recent measurements of charged-current ν_{e} and ν_{µ} interactions in the MicroBooNE detector, using data corresponding to an exposure of 6.37×10^{20} protons on target from the Fermilab booster neutrino beam. We observe no evidence of light sterile neutrino oscillations and derive exclusion contours at the 95% confidence level in the plane of the mass-squared splitting Δm_{41}^{2} and the sterile neutrino mixing angles θ_{µe} and θ_{ee}, excluding part of the parameter space allowed by experimental anomalies. Cancellation of ν_{e} appearance and ν_{e} disappearance effects due to the full 3+1 treatment of the analysis leads to a degeneracy when determining the oscillation parameters, which is discussed in this Letter and will be addressed by future analyses.

7.
Phys Rev Lett ; 128(24): 241801, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776450

RESUMO

We present a measurement of ν_{e} interactions from the Fermilab Booster Neutrino Beam using the MicroBooNE liquid argon time projection chamber to address the nature of the excess of low energy interactions observed by the MiniBooNE Collaboration. Three independent ν_{e} searches are performed across multiple single electron final states, including an exclusive search for two-body scattering events with a single proton, a semi-inclusive search for pionless events, and a fully inclusive search for events containing all hadronic final states. With differing signal topologies, statistics, backgrounds, reconstruction algorithms, and analysis approaches, the results are found to be either consistent with or modestly lower than the nominal ν_{e} rate expectations from the Booster Neutrino Beam and no excess of ν_{e} events is observed.

8.
Phys Rev Lett ; 128(15): 151801, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499871

RESUMO

We report a measurement of the energy-dependent total charged-current cross section σ(E_{ν}) for inclusive muon neutrinos scattering on argon, as well as measurements of flux-averaged differential cross sections as a function of muon energy and hadronic energy transfer (ν). Data corresponding to 5.3×10^{19} protons on target of exposure were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab booster neutrino beam with a mean neutrino energy of approximately 0.8 GeV. The mapping between the true neutrino energy E_{ν} and reconstructed neutrino energy E_{ν}^{rec} and between the energy transfer ν and reconstructed hadronic energy E_{had}^{rec} are validated by comparing the data and Monte Carlo (MC) predictions. In particular, the modeling of the missing hadronic energy and its associated uncertainties are verified by a new method that compares the E_{had}^{rec} distributions between data and a MC prediction after constraining the reconstructed muon kinematic distributions, energy, and polar angle to those of data. The success of this validation gives confidence that the missing energy in the MicroBooNE detector is well modeled and underpins first-time measurements of both the total cross section σ(E_{ν}) and the differential cross section dσ/dν on argon.

9.
Phys Rev Lett ; 128(11): 111801, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363017

RESUMO

We report results from a search for neutrino-induced neutral current (NC) resonant Δ(1232) baryon production followed by Δ radiative decay, with a ⟨0.8⟩ GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.80×10^{20} protons on target) are used to select single-photon events with one or zero protons and without charged leptons in the final state (1γ1p and 1γ0p, respectively). The background is constrained via an in situ high-purity measurement of NC π^{0} events, made possible via dedicated 2γ1p and 2γ0p selections. A total of 16 and 153 events are observed for the 1γ1p and 1γ0p selections, respectively, compared to a constrained background prediction of 20.5±3.65(syst) and 145.1±13.8(syst) events. The data lead to a bound on an anomalous enhancement of the normalization of NC Δ radiative decay of less than 2.3 times the predicted nominal rate for this process at the 90% confidence level (C.L.). The measurement disfavors a candidate photon interpretation of the MiniBooNE low-energy excess as a factor of 3.18 times the nominal NC Δ radiative decay rate at the 94.8% C.L., in favor of the nominal prediction, and represents a greater than 50-fold improvement over the world's best limit on single-photon production in NC interactions in the sub-GeV neutrino energy range.

11.
Eur Phys J C Part Fields ; 81(4): 322, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720713

RESUMO

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.

12.
Phys Rev Lett ; 127(15): 151803, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678031

RESUMO

We present a search for the decays of a neutral scalar boson produced by kaons decaying at rest, in the context of the Higgs portal model, using the MicroBooNE detector. We analyze data triggered in time with the Fermilab NuMI neutrino beam spill, with an exposure of 1.93×10^{20} protons on target. We look for monoenergetic scalars that come from the direction of the NuMI hadron absorber, at a distance of 100 m from the detector, and decay to electron-positron pairs. We observe one candidate event, with a standard model background prediction of 1.9±0.8. We set an upper limit on the scalar-Higgs mixing angle of θ<(3.3-4.6)×10^{-4} at the 95% confidence level for scalar boson masses in the range (100-200) MeV/c^{2}. We exclude, at the 95% confidence level, the remaining model parameters required to explain the central value of a possible excess of K_{L}^{0}→π^{0}νν[over ¯] decays reported by the KOTO collaboration. We also provide a model-independent limit on a new boson X produced in K→πX decays and decaying to e^{+}e^{-}.

13.
Phys Rev Lett ; 125(20): 201803, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258649

RESUMO

We report on the first measurement of flux-integrated single differential cross sections for charged-current (CC) muon neutrino (ν_{µ}) scattering on argon with a muon and a proton in the final state, ^{40}Ar (ν_{µ},µp)X. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59×10^{19} protons on target. Events are selected to enhance the contribution of CC quasielastic (CCQE) interactions. The data are reported in terms of a total cross section as well as single differential cross sections in final state muon and proton kinematics. We measure the integrated per-nucleus CCQE-like cross section (i.e., for interactions leading to a muon, one proton, and no pions above detection threshold) of (4.93±0.76_{stat}±1.29_{sys})×10^{-38} cm^{2}, in good agreement with theoretical calculations. The single differential cross sections are also in overall good agreement with theoretical predictions, except at very forward muon scattering angles that correspond to low-momentum-transfer events.

14.
Phys Rev Lett ; 125(13): 131802, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034464

RESUMO

We report the final measurement of the neutrino oscillation parameters Δm_{32}^{2} and sin^{2}θ_{23} using all data from the MINOS and MINOS+ experiments. These data were collected using a total exposure of 23.76×10^{20} protons on target producing ν_{µ} and ν[over ¯]_{µ} beams and 60.75 kt yr exposure to atmospheric neutrinos. The measurement of the disappearance of ν_{µ} and the appearance of ν_{e} events between the Near and Far detectors yields |Δm_{32}^{2}|=2.40_{-0.09}^{+0.08}(2.45_{-0.08}^{+0.07})×10^{-3} eV^{2} and sin^{2}θ_{23}=0.43_{-0.04}^{+0.20}(0.42_{-0.03}^{+0.07}) at 68% C.L. for normal (inverted) hierarchy.

15.
Phys Rev Lett ; 125(7): 071801, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857527

RESUMO

Searches for electron antineutrino, muon neutrino, and muon antineutrino disappearance driven by sterile neutrino mixing have been carried out by the Daya Bay and MINOS+ collaborations. This Letter presents the combined results of these searches, along with exclusion results from the Bugey-3 reactor experiment, framed in a minimally extended four-neutrino scenario. Significantly improved constraints on the θ_{µe} mixing angle are derived that constitute the most constraining limits to date over five orders of magnitude in the mass-squared splitting Δm_{41}^{2}, excluding the 90% C.L. sterile-neutrino parameter space allowed by the LSND and MiniBooNE observations at 90% CL_{s} for Δm_{41}^{2}<13 eV^{2}. Furthermore, the LSND and MiniBooNE 99% C.L. allowed regions are excluded at 99% CL_{s} for Δm_{41}^{2}<1.6 eV^{2}.

16.
Phys Rev Lett ; 124(16): 161802, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383902

RESUMO

Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions.

17.
Phys Rev Lett ; 123(13): 131801, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697542

RESUMO

We report the first measurement of the double-differential and total muon neutrino charged current inclusive cross sections on argon at a mean neutrino energy of 0.8 GeV. Data were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster neutrino beam and correspond to 1.6×10^{20} protons on target of exposure. The measured differential cross sections are presented as a function of muon momentum, using multiple Coulomb scattering as a momentum measurement technique, and the muon angle with respect to the beam direction. We compare the measured cross sections to multiple neutrino event generators and find better agreement with those containing more complete treatment of quasielastic scattering processes at low Q^{2}. The total flux integrated cross section is measured to be 0.693±0.010(stat)±0.165(syst)×10^{-38} cm^{2}.

18.
Phys Rev Lett ; 122(9): 091803, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932529

RESUMO

A search for mixing between active neutrinos and light sterile neutrinos has been performed by looking for muon neutrino disappearance in two detectors at baselines of 1.04 and 735 km, using a combined MINOS and MINOS+ exposure of 16.36×10^{20} protons on target. A simultaneous fit to the charged-current muon neutrino and neutral-current neutrino energy spectra in the two detectors yields no evidence for sterile neutrino mixing using a 3+1 model. The most stringent limit to date is set on the mixing parameter sin^{2}θ_{24} for most values of the sterile neutrino mass splitting Δm_{41}^{2}>10^{-4} eV^{2}.

19.
Phys Rev Lett ; 121(17): 171802, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411920

RESUMO

The T2K experiment measures muon neutrino disappearance and electron neutrino appearance in accelerator-produced neutrino and antineutrino beams. With an exposure of 14.7(7.6)×10^{20} protons on target in the neutrino (antineutrino) mode, 89 ν_{e} candidates and seven anti-ν_{e} candidates are observed, while 67.5 and 9.0 are expected for δ_{CP}=0 and normal mass ordering. The obtained 2σ confidence interval for the CP-violating phase, δ_{CP}, does not include the CP-conserving cases (δ_{CP}=0, π). The best-fit values of other parameters are sin^{2}θ_{23}=0.526_{-0.036}^{+0.032} and Δm_{32}^{2}=2.463_{-0.070}^{+0.071}×10^{-3} eV^{2}/c^{4}.

20.
Eur Phys J C Part Fields ; 78(1): 82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258394

RESUMO

The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...