Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 1902, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115558

RESUMO

Slowing light in a non-dispersive and controllable fashion opens the door to many new phenomena in photonics. As such, many schemes have been put forward to decrease the velocity of light, most of which are limited in bandwidth or incur high losses. In this paper we show that a long metallic helix supports a low-loss, broadband slow wave with a mode index that can be controlled via geometrical design. For one particular geometry, we characterise the dispersion of the mode, finding a relatively constant mode index of [Formula: see text] 45 between 10 and 30 GHz. We compare our experimental results to both a geometrical model and full numerical simulation to quantify and understand the limitations in bandwidth. We find that the bandwidth of the region of linear dispersion is associated with the degree of hybridisation between the fields of a helical mode that travels around the helical wire and an axial mode that disperses along the light line. Finally, we discuss approaches to broaden the frequency range of near-constant mode index: we find that placing a straight wire along the axis of the helix suppresses the interaction between the axial and high index modes supported by the helix, leading to both an increase in bandwidth and a more linear dispersion.

2.
Science ; 359(6379): 1013-1016, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29326117

RESUMO

Weyl points are the crossings of linearly dispersing energy bands of three-dimensional crystals, providing the opportunity to explore a variety of intriguing phenomena such as topologically protected surface states and chiral anomalies. However, the lack of an ideal Weyl system in which the Weyl points all exist at the same energy and are separated from any other bands poses a serious limitation to the further development of Weyl physics and potential applications. By experimentally characterizing a microwave photonic crystal of saddle-shaped metallic coils, we observed ideal Weyl points that are related to each other through symmetry operations. Topological surface states exhibiting helicoidal structure have also been demonstrated. Our system provides a photonic platform for exploring ideal Weyl systems and developing possible topological devices.

3.
Nat Commun ; 8(1): 97, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733654

RESUMO

The discovery of topological phases has introduced new perspectives and platforms for various interesting physics originally investigated in quantum contexts and then, on an equal footing, in classic wave systems. As a characteristic feature, nontrivial Fermi arcs, connecting between topologically distinct Fermi surfaces, play vital roles in the classification of Dirac and Weyl semimetals, and have been observed in quantum materials very recently. However, in classical systems, no direct experimental observation of Fermi arcs in momentum space has been reported so far. Here, using near-field scanning measurements, we show the observation of photonic topological surface-state arcs connecting topologically distinct bulk states in a chiral hyperbolic metamaterial. To verify the topological nature of this system, we further observe backscattering-immune propagation of a nontrivial surface wave across a three-dimension physical step. Our results demonstrate a metamaterial approach towards topological photonics and offer a deeper understanding of topological phases in three-dimensional classical systems.Topological effects known from condensed matter physics have recently also been explored in photonic systems. Here, the authors directly observe topological surface-state arcs in momentum space by near-field scanning the surface of a chiral hyperbolic metamaterial.

4.
Sci Rep ; 6: 30307, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27457405

RESUMO

We present an experimental and computational study of the response of twisted-cross metamaterials that provide near dispersionless optical rotation across a broad band of frequencies from 19 GHz to 37 GHz. We compare two distinct geometries: firstly, a bilayer structure comprised of arrays of metallic crosses where the crosses in the second layer are twisted about the layer normal; and secondly where the second layer is replaced by the complementary to the original, i.e. an array of cross-shaped holes. Through numerical modelling we determine the origin of rotatory effects in these two structures. In both, pure optical rotation occurs in a frequency band between two transmission minima, where alignment of electric and magnetic dipole moments occurs. In the cross/cross metamaterial, the transmission minima occur at the symmetric and antisymmetric resonances of the coupled crosses. By contrast, in the cross/complementary-cross structure the transmission minima are associated with the dipole and quadrupole modes of the cross, the frequencies of which appear intrinsic to the cross layer alone. Hence the bandwidth of optical rotation is found to be relatively independent of layer separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA