Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 843: 156966, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35760177

RESUMO

The salinisation of freshwater ecosystems is a global environmental problem that threatens biodiversity, ecosystem functioning and human welfare. The aim of this study was to investigate the potential impact of a realistic salinity gradient on the structure and functioning of freshwater biofilms. The salinity gradient was based on the real ion concentration of a mining effluent from an abandoned mine in Germany. We exposed biofilm from a pristine stream to 5 increasing salinities (3 to 100 g L-1) under controlled conditions in artificial streams for 21 days. We evaluated its functional (photosynthetic efficiency, nutrient uptake, and microbial respiration) and structural responses (community composition, algal biomass and diatom, cyanobacteria and green algae metrics) over time. Then we compared their responses with an unexposed biofilm used as control. The functionality and structure of the biofilm exposed to the different salinities significantly decreased after short-term and long-term exposure, respectively. The community composition shifted to a new stable state where the most tolerant species increased their abundances. At the same time, we observed an increase in the community tolerance (measured as Pollution-Induced Community Tolerance) along the salinity gradient. This study provides relevant information on the salt threshold concentrations that can substantially damage algal cells (i.e., between 15 and 30 g L-1). The results provide new insights regarding the response and adaptation of stream biofilm to salinity and its potential implications at the ecosystem level.


Assuntos
Diatomáceas , Rios , Biofilmes , Ecossistema , Humanos , Mineração , Rios/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-32235625

RESUMO

This review is focused on the biogeochemistry of arsenic in freshwaters and, especially, on the key role that benthic microalgae and prokaryotic communities from biofilms play together in through speciation, distribution, and cycling. These microorganisms incorporate the dominant iAs (inorganic arsenic) form and may transform it to other arsenic forms through metabolic or detoxifying processes. These transformations have a big impact on the environmental behavior of arsenic because different chemical forms exhibit differences in mobility and toxicity. Moreover, exposure to toxicants may alter the physiology and structure of biofilms, leading to changes in ecosystem function and trophic relations. In this review we also explain how microorganisms (i.e., biofilms) can influence the effects of arsenic exposure on other key constituents of aquatic ecosystems such as fish. At the end, we present two real cases of fluvial systems with different origins of arsenic exposure (natural vs. anthropogenic) that have improved our comprehension of arsenic biogeochemistry and toxicity in freshwaters, the Pampean streams (Argentina) and the Anllóns River (Galicia, Spain). We finish with a briefly discussion of what we consider as future research needs on this topic. This work especially contributes to the general understanding of biofilms influencing arsenic biogeochemistry and highlights the strong impact of nutrient availability on arsenic toxicity for freshwater (micro) organisms.


Assuntos
Arsênio/química , Ecossistema , Poluentes Químicos da Água/química , Animais , Organismos Aquáticos , Argentina , Arsênio/toxicidade , Espanha , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 636: 985-998, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29729516

RESUMO

Gold mining activities in fluvial systems may cause arsenic (As) pollution, as is the case at the Anllóns River (Galicia, NW Spain), where high concentrations of arsenate (AsV) in surface sediments (up to 270 mg kg-1) were found. A 51 day-long biofilm-translocation experiment was performed in this river, moving some biofilm-colonized substrata from upstream (less As-polluted) to downstream the mine area (more As-polluted site), to explore the effect of As on benthic biofilms, as well as their role on As retention and speciation in the water-sediment interface. Eutrophic conditions (range: 0.07-0.38 mg L-1 total phosphorus, TP) were detected in water in both sites, while sediments were not considered P-polluted (below 600 mg kg-1). Dimethylarsenate (DMAV) was found intracellularly and in the river water, suggesting a detoxification process by biofilms. Since most As in sediments and water was AsV, the high amount of arsenite (AsIII) detected extracellularly may also confirm AsV reduction by biofilms. Furthermore, translocated biofilms accumulated more As and showed higher potential toxicity (higher As/P ratio). In concordance, their growth was reduced to half that observed in those non-translocated, became less nutritive (less nitrogen content), and with higher bacterial and dead diatom densities. Besides the high As exposure, other environmental conditions such as the higher riparian cover at the more As-polluted site could contribute to those effects. Our study provides new arguments to understand the contribution of microorganisms to the As biogeochemistry in freshwater environments.


Assuntos
Arsênio/análise , Biofilmes , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Mineração , Espanha
4.
Environ Sci Pollut Res Int ; 23(5): 4257-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26141976

RESUMO

Arsenic (As) pollution in water has important impacts for human and ecosystem health. In freshwaters, arsenate (As(V)) can be taken up by microalgae due to its similarity with phosphate molecules, its toxicity being aggravated under phosphate depletion. An experiment combining ecological and ecotoxicological descriptors was conducted to investigate the effects of As(V) (130 µg L(-1) over 13 days) on the structure and function of fluvial biofilm under phosphate-limiting conditions. We further incorporated fish (Gambusia holbrooki) into our experimental system, expecting fish to provide more available phosphate for algae and, consequently, protecting algae against As toxicity. However, this protection role was not fully achieved. Arsenic inhibited algal growth and productivity but not bacteria. The diatom community was clearly affected showing a strong reduction in cell biovolume; selection for tolerant species, in particular Achnanthidium minutissimum; and a reduction in species richness. Our results have important implications for risk assessment, as the experimental As concentration used was lower than acute toxicity criteria established by the USEPA.


Assuntos
Arseniatos/toxicidade , Biofilmes/crescimento & desenvolvimento , Diatomáceas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Arseniatos/análise , Biofilmes/efeitos dos fármacos , Ciprinodontiformes/metabolismo , Diatomáceas/crescimento & desenvolvimento , Ecossistema , Água Doce/química , Humanos , Fosfatos/farmacologia , Fatores de Tempo , Poluentes Químicos da Água/análise
5.
Aquat Toxicol ; 156: 116-24, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25190483

RESUMO

Arsenic contamination has global impacts and freshwaters are major arsenic repositories. Arsenic toxicity depends on numerous interacting factors which makes effects difficult to estimate. The use of aquatic algae is often advocated for bioremediation of arsenic contaminated waters as they absorb arsenate and transform it into arsenite and methylated chemical species. Fish are another key constituent of aquatic ecosystems. Contamination in natural systems is often too low to cause mortality but sufficient to interfere with normal functioning. Alteration of complex, naturally occurring fish behaviours such as foraging and aggression are ecologically relevant indicators of toxicity and ideal for assessing sublethal impacts. We examined the effects of arsenic exposure in the invasive mosquitofish, Gambusia holbrooki, in a laboratory experiment incorporating some of the complexity of natural systems by including the interacting effects of aquatic algae. Our aims were to quantify the effects of arsenic on some complex behaviours and physical parameters in mosquitofish, and to assess whether the detoxifying mechanisms of algae would ameliorate any effects of arsenic exposure. Aggression increased significantly with arsenic whereas operculum movement decreased non-significantly and neither food capture efficiency nor consumption were notably affected. Bioaccumulation increased with arsenic and unexpectedly so did fish biomass. Possibly increased aggression facilitated food resource defence allowing fish to gain weight. The presence of algae aggravated the effects of arsenic exposure. For increase in fish biomass, algae acted antagonistically with arsenic, resulting in a disadvantageous reduction in weight gained. For bioaccumulation the effects were even more severe, as algae operated additively with arsenic to increase arsenic uptake and/or assimilation. Aggression was also highest in the presence of both algae and arsenic. Bioremediation of arsenic contaminated waters using aquatic algae should therefore be carried out with consideration of entire ecosystem effects. We highlight that multidisciplinary, cross-taxon research, particularly integrating behavioural and other effects, is crucial for understanding the impacts of arsenic toxicity and thus restoration of aquatic ecosystems.


Assuntos
Arsênio/toxicidade , Comportamento Animal/efeitos dos fármacos , Clorófitas/fisiologia , Ciprinodontiformes/fisiologia , Ecossistema , Poluentes Químicos da Água/toxicidade , Animais , Biodegradação Ambiental , Clorófitas/metabolismo , Exposição Ambiental , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...