Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(41): 28640-50, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25160624

RESUMO

The retention and splicing (RES) complex is a conserved spliceosome-associated module that was shown to enhance splicing of a subset of transcripts and promote the nuclear retention of unspliced pre-mRNAs in yeast. The heterotrimeric RES complex is organized around the Snu17p protein that binds to both the Bud13p and Pml1p subunits. Snu17p exhibits an RRM domain that resembles a U2AF homology motif (UHM) and Bud13p harbors a Trp residue reminiscent of an UHM-ligand motif (ULM). It has therefore been proposed that the interaction between Snu17p and Bud13p resembles canonical UHM-ULM complexes. Here, we have used biochemical and NMR structural analysis to characterize the structure of the yeast Snu17p-Bud13p complex. Unlike known UHMs that sequester the Trp residue of the ULM ligand in a hydrophobic pocket, Snu17p and Bud13p utilize a large interaction surface formed around the two helices of the Snu17p domain. In total 18 residues of the Bud13p ligand wrap around the Snu17p helical surface in an U-turn-like arrangement. The invariant Trp(232) in Bud13p is located in the center of the turn, and contacts surface residues of Snu17p. The structural data are supported by mutational analysis and indicate that Snu17p provides an extended binding surface with Bud13p that is notably distinct from canonical UHM-ULM interactions. Our data highlight structural diversity in RRM-protein interactions, analogous to the one seen for nucleic acid interactions.


Assuntos
Proteínas de Transporte/química , Precursores de RNA/biossíntese , RNA Fúngico/biossíntese , Ribonucleoproteína Nuclear Pequena U2/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Spliceossomos/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Precursores de RNA/genética , Splicing de RNA , RNA Fúngico/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Spliceossomos/metabolismo , Triptofano/química , Triptofano/metabolismo
2.
Nat Struct Mol Biol ; 19(10): 983-90, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22961380

RESUMO

The exon-junction complex (EJC) functionally links splicing to subsequent mRNA localization, translation and stability. Sequence-independent binding of the EJC core to RNA is ensured by the DEAD-box helicase eIF4AIII. Here, we identified the splicing factor CWC22 as a new eIF4AIII partner in flies and humans. CWC22 coexists with eIF4AIII in large protein complexes distinct from EJCs. Recombinant CWC22 directly contacts eIF4AIII and prevents it from binding RNA. In vitro splicing assays revealed that CWC22 introduces eIF4AIII to spliceosomes before remodeling to facilitate eIF4AIII incorporation into the EJC. Finally, using knockdowns in vivo, we showed that CWC22 is essential for EJC assembly. We elucidated the initial step of EJC assembly and the duality of CWC22 function that hinders eIF4AIII from nonspecifically binding RNA and escorts it to the splicing machinery to promote EJC assembly on mature mRNAs.


Assuntos
Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Spliceossomos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , RNA Helicases DEAD-box/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Técnicas de Silenciamento de Genes , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Peptidilprolil Isomerase , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
RNA ; 17(12): 2119-29, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22020974

RESUMO

Complex cellular functions involve large networks of interactions. Pre-mRNA splicing and transcription are thought to be coupled by the C-terminal domain (CTD) of the large subunit of RNA polymerase II (Pol II). In yeast, the U1 snRNP subunit Prp40 was proposed to mediate cotranscriptional recruitment of early splicing factors through binding of its WW domains to the Pol II CTD. Here we investigate the role of Prp40 in splicing with an emphasis on the role of the WW domains, which might confer protein-protein interactions among the splicing and transcriptional machineries. Affinity purification revealed that Prp40 and Snu71 form a stable heterodimer that stably associates with the U1 snRNP only in the presence of Nam8, a known regulator of 5' splice site recognition. However, the Prp40 WW domains were dispensable for yeast viability. In their absence, no defect in splicing in vivo, U1 or U2 snRNP recruitment in vivo, or early splicing complex assembly in vitro was detected. We conclude that the WW domains of Prp40 do not mediate essential coupling between U1 snRNP and Pol II. Instead, delays in cotranscriptional U5 snRNP and Prp19 recruitment and altered spliceosome formation in vitro suggest that Prp40 WW domains assist in late steps of spliceosome assembly.


Assuntos
Splicing de RNA , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/genética , Leveduras/genética , Leveduras/metabolismo
4.
Nucleic Acids Res ; 36(7): 2219-29, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18281698

RESUMO

Regulation of the elongation phase of RNA polymerase II transcription by P-TEFb is a critical control point for gene expression. The activity of P-TEFb is regulated, in part, by reversible association with one of two HEXIMs and the 7SK snRNP. A recent proteomics survey revealed that P-TEFb and the HEXIMs are tightly connected to two previously-uncharacterized proteins, the methyphosphate capping enzyme, MEPCE, and a La-related protein, LARP7. Glycerol gradient sedimentation analysis of lysates from cells treated with P-TEFb inhibitors, suggested that the 7SK snRNP reorganized such that LARP7 and 7SK remained associated after P-TEFb and HEXIM1 were released. Immunodepletion of LARP7 also depleted most of the 7SK regardless of the presence of P-TEFb, HEXIM or hnRNP A1 in the complex. Small interfering RNA knockdown of LARP7 in human cells decreased the steady-state level of 7SK, led to an initial increase in free P-TEFb and increased Tat transactivation of the HIV-1 LTR. Knockdown of LARP7 or 7SK ultimately caused a decrease in total P-TEFb protein levels. Our studies have identified LARP7 as a 7SK-binding protein and suggest that free P-TEFb levels are determined by a balance between release from the large form and reduction of total P-TEFb.


Assuntos
Fator B de Elongação Transcricional Positiva/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular , Produtos do Gene tat/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Interferência de RNA , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/análise , Ribonucleoproteínas/antagonistas & inibidores , Fatores de Transcrição , Ativação Transcricional
5.
Biol Cell ; 100(2): 83-95, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18199047

RESUMO

During the past decade, numerous ncRNAs (non-coding RNAs) have been identified as regulators of transcription. This review focuses on a few examples of ncRNAs that directly interact with and regulate components of the transcription machinery. Artificial RNA aptamers have been selected against components of the transcriptional machinery. The bacterial 6S RNA and the eukaryotic B2 RNA directly target RNA polymerases. The 7SK RNA, U1 snRNA (small nuclear RNA) and SRA (steroid receptor RNA activator) RNA bind to and regulate the activity of transcription factors. Xist (X-inactive-specific transcript) and roX (RNA on the X) RNAs are involved in epigenetic regulation of transcription through the recruitment of histone-modifying enzymes.


Assuntos
RNA não Traduzido/metabolismo , Transcrição Gênica , Animais , RNA Polimerases Dirigidas por DNA/metabolismo , Regiões Promotoras Genéticas/genética , Moldes Genéticos , Fatores de Transcrição/metabolismo
6.
Mol Cell Biol ; 27(20): 6996-7006, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17709395

RESUMO

The positive transcription elongation factor P-TEFb controls the elongation of transcription by RNA polymerase II. P-TEFb is inactivated upon binding to HEXIM1 or HEXIM2 proteins associated with a noncoding RNA, 7SK. In response to the inhibition of transcription, 7SK RNA, as well as HEXIM proteins, is released by an unknown mechanism and P-TEFb is activated. New partners of 7SK RNA were searched for as potential players in this feedback process. A subset of heterogeneous ribonuclear proteins, hnRNPs Q and R and hnRNPs A1 and A2, were thus identified as major 7SK RNA-associated proteins. The degree of association of 7SK RNA with these hnRNPs increased when P-TEFb-HEXIM1-7SK was dissociated following the inhibition of transcription or HEXIM1 knockdown. This finding suggested that 7SK RNA shuttles from HEXIM1-P-TEFb complexes to hnRNPs. The transcription-dependent dissociation of P-TEFb-HEXIM1-7SK complexes was attenuated when both hnRNPs A1 and A2 were knocked down by small interfering RNA. As hnRNPs are known to interact transiently with RNA while it is synthesized, hnRNPs released from nascent transcripts may trap 7SK RNA and thereby contribute to the activation of P-TEFb.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Substâncias Macromoleculares/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Transcrição Gênica , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Modelos Genéticos , Fator B de Elongação Transcricional Positiva/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Citoplasmático Pequeno/genética , Proteínas de Ligação a RNA/genética , Partícula de Reconhecimento de Sinal/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...