Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38464009

RESUMO

SELENON-Related Myopathy (SELENON-RM) is a rare congenital myopathy caused by mutations of the SELENON gene characterized by axial muscle weakness and progressive respiratory insufficiency. Muscle histopathology commonly includes multiminicores or a dystrophic pattern but is often non-specific. The SELENON gene encodes selenoprotein N (SelN), a selenocysteine-containing redox enzyme located in the endo/sarcoplasmic reticulum membrane where it colocalizes with mitochondria-associated membranes. However, the molecular mechanism(s) by which SelN deficiency causes SELENON-RM are undetermined. A hurdle is the lack of cellular and animal models that show assayable phenotypes. Here we report deep-phenotyping of SelN-deficient zebrafish and muscle cells. SelN-deficient zebrafish exhibit changes in embryonic muscle function and swimming activity in larvae. Analysis of single cell RNAseq data in a zebrafish embryo-atlas revealed coexpression between selenon and genes involved in glutathione redox pathway. SelN-deficient zebrafish and mouse myoblasts exhibit changes in glutathione and redox homeostasis, suggesting a direct relationship with SelN function. We report changes in metabolic function abnormalities in SelN-null myotubes when compared to WT. These results suggest that SelN has functional roles during zebrafish early development and myoblast metabolism.

2.
J Am Heart Assoc ; 11(23): e026494, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444867

RESUMO

Background Integrin α7ß1 is a major laminin receptor in skeletal and cardiac muscle. In skeletal muscle, integrin α7ß1 plays an important role during muscle development and has been described as an important modifier of skeletal muscle diseases. The integrin α7ß1 is also highly expressed in the heart, but its precise role in cardiac function is unknown. Mutations in the integrin α7 gene (ITGA7) have been reported in children with congenital myopathy. Methods and Results In this study, we described skeletal and cardiac muscle pathology in Itga7-/- mice and 5 patients from 2 unrelated families with ITGA7 mutations. Proband in family 1 presented a homozygous c.806_818del [p.S269fs] variant, and proband in family 2 was identified with 2 intron variants in the ITGA7 gene. The complete absence of the integrin α7 protein in muscle supports the ITGA7 mutations are pathogenic. We performed electrocardiography, echocardiography, or cardiac magnetic resonance imaging, and histological biopsy analyses in patients with ITGA7 deficiency and Itga7-/- mice. The patients exhibited cardiac dysrhythmia and dysfunction from the third decade of life and late-onset respiratory insufficiency, but with relatively mild limb muscle involvement. Mice demonstrated corresponding abnormalities in cardiac conduction and contraction as well as diaphragm muscle fibrosis. Conclusions Our data suggest that loss of integrin α7 causes a novel form of adult-onset cardiac dysfunction indicating a critical role for the integrin α7ß1 in normal cardiac function and highlights the need for long-term cardiac monitoring in patients with ITGA7-related congenital myopathy.


Assuntos
Cardiopatias , Doenças Musculares , Criança , Humanos , Adulto , Camundongos , Animais , Família
3.
PLoS Pathog ; 17(1): e1009216, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481911

RESUMO

Intracellular pathogens have evolved to utilize normal cellular processes to complete their replicative cycles. Pathogens that interface with proliferative cell signaling pathways risk infections that can lead to cancers, but the factors that influence malignant outcomes are incompletely understood. Human papillomaviruses (HPVs) predominantly cause benign hyperplasia in stratifying epithelial tissues. However, a subset of carcinogenic or "high-risk" HPV (hr-HPV) genotypes are etiologically linked to nearly 5% of all human cancers. Progression of hr-HPV-induced lesions to malignancies is characterized by increased expression of the E6 and E7 oncogenes and the oncogenic functions of these viral proteins have been widely studied. Yet, the mechanisms that regulate hr-HPV oncogene transcription and suppress their expression in benign lesions remain poorly understood. Here, we demonstrate that EGFR/MEK/ERK signaling, influenced by epithelial contact inhibition and tissue differentiation cues, regulates hr-HPV oncogene expression. Using monolayer cells, epithelial organotypic tissue models, and neoplastic tissue biopsy materials, we show that cell-extrinsic activation of ERK overrides cellular control to promote HPV oncogene expression and the neoplastic phenotype. Our data suggest that HPVs are adapted to use the EGFR/MEK/ERK signaling pathway to regulate their productive replicative cycles. Mechanistic studies show that EGFR/MEK/ERK signaling influences AP-1 transcription factor activity and AP-1 factor knockdown reduces oncogene transcription. Furthermore, pharmacological inhibitors of EGFR, MEK, and ERK signaling quash HPV oncogene expression and the neoplastic phenotype, revealing a potential clinical strategy to suppress uncontrolled cell proliferation, reduce oncogene expression and treat HPV neoplasia.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/complicações , Neoplasias do Colo do Útero/virologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Terapia de Alvo Molecular , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/terapia
4.
Skelet Muscle ; 10(1): 18, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32498713

RESUMO

BACKGROUND: Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a devastating genetic disease caused by mutations in the LAMA2 gene. These mutations result in progressive muscle wasting and inflammation leading to delayed milestones, and reduced lifespan in affected patients. There is currently no cure or treatment for LAMA2-CMD. Preclinical studies have demonstrated that mouse laminin-111 can serve as an effective protein replacement therapy in a mouse model of LAMA2-CMD. METHODS: In this study, we generated a novel immunocompromised dyW mouse model of LAMA2-CMD to study the role the immune system plays in muscle disease progression. We used this immune-deficient dyW mouse model to test the therapeutic benefits of recombinant human laminin-111 and laminin-211 protein therapy on laminin-α2-deficient muscle disease progression. RESULTS: We show that immunodeficient laminin-α2 null mice demonstrate subtle differences in muscle regeneration compared to immunocompetent animals during early disease stages but overall exhibit a comparable muscle disease progression. We found human laminin-111 and laminin-211 could serve as effective protein replacement strategies with mice showing improvements in muscle pathology and function. We observed that human laminin-111 and laminin-211 exhibit differences on satellite and myoblast cell populations and differentially affect muscle repair. CONCLUSIONS: This study describes the generation of a novel immunodeficient mouse model that allows investigation of the role the immune system plays in LAMA2-CMD. This model can be used to assess the therapeutic potential of heterologous therapies that would elicit an immune response. Using this model, we show that recombinant human laminin-111 can serve as effective protein replacement therapy for the treatment of LAMA2-CMD.


Assuntos
Terapia Genética/métodos , Laminina/genética , Distrofias Musculares/terapia , Animais , Humanos , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Hum Mol Genet ; 29(13): 2162-2170, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32472139

RESUMO

Laminin-α2 related congenital muscular dystrophy (LAMA2-CMD) is a fatal muscle disease caused by mutations in the LAMA2 gene. Laminin-α2 is critical for the formation of laminin-211 and -221 heterotrimers in the muscle basal lamina. LAMA2-CMD patients exhibit hypotonia from birth and progressive muscle loss that results in developmental delay, confinement to a wheelchair, respiratory insufficiency and premature death. There is currently no cure or effective treatment for LAMA2-CMD. Several studies have shown laminin-111 can serve as an effective protein-replacement therapy for LAMA2-CMD. Studies have demonstrated early treatment with laminin-111 protein results in an increase in life expectancy and improvements in muscle pathology and function. Since LAMA2-CMD patients are often diagnosed after advanced disease, it is unclear if laminin-111 protein therapy at an advanced stage of the disease can have beneficial outcomes. In this study, we tested the efficacy of laminin-111 protein therapy after disease onset in a mouse model of LAMA2-CMD. Our results showed laminin-111 treatment after muscle disease onset increased life expectancy, promoted muscle growth and increased muscle stiffness. Together these studies indicate laminin-111 protein therapy either early or late in the disease process could serve as an effective protein replacement therapy for LAMA2-CMD.


Assuntos
Laminina/farmacologia , Doenças Musculares/genética , Distrofias Musculares/genética , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/crescimento & desenvolvimento , Modelos Animais de Doenças , Humanos , Laminina/genética , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Doenças Musculares/patologia , Distrofias Musculares/patologia , Mutação/genética
6.
Skelet Muscle ; 10(1): 8, 2020 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-32278354

RESUMO

BACKGROUND: All types of facioscapulohumeral muscular dystrophy (FSHD) are caused by the aberrant activation of the somatically silent DUX4 gene, the expression of which initiates a cascade of cellular events ultimately leading to FSHD pathophysiology. Typically, progressive skeletal muscle weakness becomes noticeable in the second or third decade of life, yet there are many individuals who are genetically FSHD but develop symptoms much later in life or remain relatively asymptomatic throughout their lives. Conversely, FSHD may clinically present prior to 5-10 years of age, ultimately manifesting as a severe early-onset form of the disease. These phenotypic differences are thought to be due to the timing and levels of DUX4 misexpression. METHODS: FSHD is a dominant gain-of-function disease that is amenable to modeling by DUX4 overexpression. We have recently created a line of conditional DUX4 transgenic mice, FLExDUX4, that develop a myopathy upon induction of human DUX4-fl expression in skeletal muscle. Here, we use the FLExDUX4 mouse crossed with the skeletal muscle-specific and tamoxifen-inducible line ACTA1-MerCreMer to generate a highly versatile bi-transgenic mouse model with chronic, low-level DUX4-fl expression and cumulative mild FSHD-like pathology that can be reproducibly induced to develop more severe pathology via tamoxifen induction of DUX4-fl in skeletal muscles. RESULTS: We identified conditions to generate FSHD-like models exhibiting reproducibly mild, moderate, or severe DUX4-dependent pathophysiology and characterized progression of pathology. We assayed DUX4-fl mRNA and protein levels, fitness, strength, global gene expression, and histopathology, all of which are consistent with an FSHD-like myopathic phenotype. Importantly, we identified sex-specific and muscle-specific differences that should be considered when using these models for preclinical studies. CONCLUSIONS: The ACTA1-MCM;FLExDUX4 bi-transgenic mouse model has mild FSHD-like pathology and detectable muscle weakness. The onset and progression of more severe DUX4-dependent pathologies can be controlled via tamoxifen injection to increase the levels of mosaic DUX4-fl expression, providing consistent and readily screenable phenotypes for assessing therapies targeting DUX4-fl mRNA and/or protein and are useful to investigate certain conserved downstream FSHD-like pathophysiology. Overall, this model supports that DUX4 expression levels in skeletal muscle directly correlate with FSHD-like pathology by numerous metrics.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Fenótipo , Animais , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Transgenes , Regulação para Cima
7.
Front Mol Neurosci ; 13: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116540

RESUMO

Laminin-α2-related congenital muscular dystrophy (LAMA2-CMD) is a devastating neuromuscular disease caused by mutations in the LAMA2 gene. These mutations result in the complete absence or truncated expression of the laminin-α2 chain. The α2-chain is a major component of the laminin-211 and laminin-221 isoforms, the predominant laminin isoforms in healthy adult skeletal muscle. Mutations in this chain result in progressive skeletal muscle degeneration as early as neonatally. Laminin-211/221 is a ligand for muscle cell receptors integrin-α7ß1 and α-dystroglycan. LAMA2 mutations are correlated with integrin-α7ß1 disruption in skeletal muscle. In this review, we will summarize laminin-211/221 interactions with integrin-α7ß1 in LAMA2-CMD muscle. Additionally, we will summarize recent developments using upregulation of laminin-111 in the sarcolemma of laminin-α2-deficient muscle. We will discuss potential mechanisms of action by which laminin-111 is able to prevent myopathy. These published studies demonstrate that laminin-111 is a disease modifier of LAMA2-CMD through different methods of delivery. Together, these studies show the potential for laminin-111 therapy as a novel paradigm for the treatment of LAMA2-CMD.

8.
Hum Mol Genet ; 28(16): 2686-2695, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31179490

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating X-linked disease affecting ~1 in 5000 males. DMD patients exhibit progressive muscle degeneration and weakness, leading to loss of ambulation and premature death from cardiopulmonary failure. We previously reported that mouse Laminin-111 (msLam-111) protein could reduce muscle pathology and improve muscle function in the mdx mouse model for DMD. In this study, we examined the ability of msLam-111 to prevent muscle disease progression in the golden retriever muscular dystrophy (GRMD) dog model of DMD. The msLam-111 protein was injected into the cranial tibial muscle compartment of GRMD dogs and muscle strength and pathology were assessed. The results showed that msLam-111 treatment increased muscle fiber regeneration and repair with improved muscle strength and reduced muscle fibrosis in the GRMD model. Together, these findings support the idea that Laminin-111 could serve as a novel protein therapy for the treatment of DMD.


Assuntos
Laminina/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Proteínas Recombinantes/farmacologia , Regeneração/efeitos dos fármacos , Animais , Biomarcadores , Modelos Animais de Doenças , Cães , Laminina/administração & dosagem , Masculino , Camundongos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/etiologia , Fenótipo , Proteínas Recombinantes/administração & dosagem , Resultado do Tratamento
9.
Mol Ther Methods Clin Dev ; 13: 145-153, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30788383

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating disease caused by mutations in the dystrophin gene that result in the complete absence of dystrophin protein. We have shown previously that recombinant mouse Galectin-1 treatment improves physiological and histological outcome measures in the mdx mouse model of DMD. Because recombinant human Galectin-1 (rHsGal1) will be used to treat DMD patients, we performed a dose-ranging study and intraperitoneal or intravenous delivery to determine the efficacy of rHsGal1 to improve preclinical outcome measures in mdx mice. Our studies showed that the optimal dose of rHsGal1 delivered intraperitoneally was 20 mg/kg and that this treatment improved muscle strength, sarcolemma stability, and capillary density in skeletal muscle. We next examined the efficacy of intravenous delivery and found that a dose of 2.5 mg/kg rHsGal1 was well tolerated and improved outcome measures in the mdx mouse model. Our studies identified that intravenous doses of rHsGal1 exceeding 2.5 mg/kg resulted in toxicity, indicating that dosing using this delivery mechanism will need to be carefully monitored. Our results support the idea that rHsGal1 treatment can improve outcome measures in the mdx mouse model and support further development as a potential therapeutic agent for DMD.

10.
Hum Mol Genet ; 28(13): 2120-2132, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30806670

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal, muscle degenerative disease causing premature death of affected children. DMD is characterized by mutations in the dystrophin gene that result in a loss of the dystrophin protein. Loss of dystrophin causes an associated reduction in proteins of the dystrophin glycoprotein complex, leading to contraction-induced sarcolemmal weakening, muscle tearing, fibrotic infiltration and rounds of degeneration and failed regeneration affecting satellite cell populations. The α7ß1 integrin has been implicated in increasing myogenic capacity of satellite cells, therefore restoring muscle viability, increasing muscle force and preserving muscle function in dystrophic mouse models. In this study, we show that a Food and Drug Administration (FDA)-approved small molecule, Sunitinib, is a potent α7 integrin enhancer capable of promoting myogenic regeneration by stimulating satellite cell activation and increasing myofiber fusion. Sunitinib exerts its regenerative effects via transient inhibition of SHP-2 and subsequent activation of the STAT3 pathway. Treatment of mdx mice with Sunitinib demonstrated decreased membrane leakiness and damage owing to myofiber regeneration and enhanced support at the extracellular matrix. The decreased myofiber damage translated into a significant increase in muscle force production. This study identifies an already FDA-approved compound, Sunitinib, as a possible DMD therapeutic with the potential to treat other muscular dystrophies in which there is defective muscle repair.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Sunitinibe/uso terapêutico , Animais , Linhagem Celular , Modelos Animais de Doenças , Progressão da Doença , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Miogenina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Regeneração , Fator de Transcrição STAT3/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Células Satélites de Músculo Esquelético/metabolismo , Sunitinibe/farmacologia
11.
Compr Physiol ; 7(4): 1519-1536, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28915335

RESUMO

Extracellular matrix (ECM) myopathies and muscular dystrophies are a group of genetic diseases caused by mutations in genes encoding proteins that provide critical links between muscle cells and the extracellular matrix. These include structural proteins of the ECM, muscle cell receptors, enzymes, and intracellular proteins. Loss of adhesion within the myomatrix results in progressive muscle weakness. For many ECM muscular dystrophies, symptoms can occur any time after birth and often result in reduced life expectancy. There are no cures for the ECM-related muscular dystrophies and treatment options are limited to palliative care. Several therapeutic approaches have been explored to treat muscular dystrophies including gene therapy, gene editing, exon skipping, embryonic, and adult stem cell therapy, targeting genetic modifiers, modulating inflammatory responses, or preventing muscle degeneration. Recently, protein therapies that replace components of the defective myomatrix or enhance muscle and/or extracellular matrix integrity and function have been explored. Preclinical studies for many of these biologics have been promising in animal models of these muscle diseases. This review aims to summarize the ECM muscular dystrophies for which protein therapies are being developed and discuss the exciting potential and possible limitations of this approach for treating this family of devastating genetic muscle diseases. © 2017 American Physiological Society. Compr Physiol 7:1519-1536, 2017.


Assuntos
Proteínas da Matriz Extracelular/genética , Terapia Genética/métodos , Distrofias Musculares/genética , Miopatias Congênitas Estruturais/genética , Animais , Proteínas da Matriz Extracelular/metabolismo , Terapia Genética/efeitos adversos , Humanos , Distrofias Musculares/metabolismo , Distrofias Musculares/terapia , Miopatias Congênitas Estruturais/metabolismo , Miopatias Congênitas Estruturais/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...