Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 724: 150174, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38852507

RESUMO

The primary cilium is a hair-like projection that controls cell development and tissue homeostasis. Although accumulated studies identify the molecular link between cilia and cilia-related diseases, the underlying etiology of ciliopathies has not been fully understood. In this paper, we determine the function of Rab34, a small GTPase, as a key regulator for controlling ciliogenesis and type I collagen trafficking in craniofacial development. Mechanistically, Rab34 is required to form cilia that control osteogenic proliferation, survival, and differentiation via cilia-mediated Hedgehog signaling. In addition, Rab34 is indispensable for regulating type I collagen trafficking from the ER to the Golgi. These results demonstrate that Rab34 has both ciliary and non-ciliary functions to regulate osteogenesis. Our study highlights the critical function of Rab34, which may contribute to understanding the novel etiology of ciliopathies that are associated with the dysfunction of RAB34 in humans.

2.
J Anat ; 244(2): 358-367, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37794731

RESUMO

The primary cilium is an essential organelle that is important for normal cell signalling during development and homeostasis but its role in pituitary development has not been reported. The primary cilium facilitates signal transduction for multiple pathways, the best-characterised being the SHH pathway, which is known to be necessary for correct pituitary gland development. FUZ is a planar cell polarity (PCP) effector that is essential for normal ciliogenesis, where the primary cilia of Fuz-/- mutants are shorter or non-functional. FUZ is part of a group of proteins required for recruiting retrograde intraflagellar transport proteins to the base of the organelle. Previous work has reported ciliopathy phenotypes in Fuz-/- homozygous null mouse mutants, including neural tube defects, craniofacial abnormalities, and polydactyly, alongside PCP defects including kinked/curly tails and heart defects. Interestingly, the pituitary gland was reported to be missing in Fuz-/- mutants at 14.5 dpc but the mechanisms underlying this phenotype were not investigated. Here, we have analysed the pituitary development of Fuz-/- mutants. Histological analyses reveal that Rathke's pouch (RP) is initially induced normally but is not specified and fails to express LHX3, resulting in hypoplasia and apoptosis. Characterisation of SHH signalling reveals reduced pathway activation in Fuz-/- mutant relative to control embryos, leading to deficient specification of anterior pituitary fate. Analyses of the key developmental signals FGF8 and BMP4, which are influenced by SHH, reveal abnormal patterning in the ventral diencephalon, contributing further to abnormal RP development. Taken together, our analyses suggest that primary cilia are required for normal pituitary specification through SHH signalling.


Assuntos
Polaridade Celular , Cílios , Animais , Camundongos , Cílios/fisiologia , Proteínas Hedgehog/metabolismo , Camundongos Knockout , Hipófise/metabolismo , Proteínas/metabolismo
3.
Cell Rep ; 42(9): 113030, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632751

RESUMO

Neural crest cells are multipotent cells that delaminate from the neuroepithelium, migrating throughout the embryo. Aberrant migration causes developmental defects. Animal models are improving our understanding of neural crest anomalies, but in vivo migration behaviors are poorly understood. Here, we demonstrate that murine neural crest cells display actin-based lamellipodia and filopodia in vivo. Using neural crest-specific knockouts or inhibitors, we show that the serine-threonine kinase glycogen synthase kinase-3 (GSK3) and the cytoskeletal regulator lamellipodin (Lpd) are required for lamellipodia formation while preventing focal adhesion maturation. Lpd is a substrate of GSK3, and phosphorylation of Lpd favors interactions with the Scar/WAVE complex (lamellipodia formation) at the expense of VASP and Mena interactions (adhesion maturation and filopodia formation). This improved understanding of cytoskeletal regulation in mammalian neural crest migration has general implications for neural crest anomalies and cancer.


Assuntos
Adesões Focais , Quinase 3 da Glicogênio Sintase , Crista Neural , Animais , Camundongos , Movimento Celular , Mamíferos , Crista Neural/citologia , Pseudópodes
4.
J Anat ; 243(1): 90-99, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36899483

RESUMO

The Hedgehog pathway gene Gli1 has been proposed to mark a subpopulation of skeletal stem cells (SSCs) in craniofacial bone. Skeletal stem cells (SSCs) are multi-potent cells crucial for the development and homeostasis of bone. Recent studies on long bones have suggested that skeletal stem cells in endochondral or intramembranous ossification sites have different differentiation capacities. However, this has not been well-defined in neural crest derived bones. Generally, the long bones are derived from mesoderm and follow an endochondral ossification model, while most of the cranial bones are neural crest (NC) in origin and follow an intramembranous ossification model. The mandible is unique: It is derived from the neural crest lineage but makes use of both modes of ossification. Early in fetal development, the mandibular body is generated by intramembranous ossification with subsequent endochondral ossification forming the condyle. The identities and properties for SSCs in these two sites remain unknown. Here, we use genetic lineage tracing in mouse to identify cells expressing the Hedgehog responsive gene Gli1, which is thought to mark the tissue resident SSCs. We track the Gli1+ cells, comparing cells within the perichondrium to those in the periosteum covering the mandibular body. In juvenile mice, these have distinct differentiation and proliferative potential. We also assess the presence of Sox10+ cells, thought to mark neural crest stem cells, but find no substantial population associated with the mandibular skeleton, suggesting that Sox10+ cells have limited contribution to maintaining postnatal mandibular bone. All together, our study indicates that the Gli1+ cells display distinct and limited differentiation capacity dependent on their regional associations.


Assuntos
Proteínas Hedgehog , Osteogênese , Camundongos , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteínas Hedgehog/metabolismo , Mandíbula/metabolismo , Crânio , Crista Neural
5.
Acta Biomater ; 149: 179-188, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779773

RESUMO

Successfully replacing damaged cartilage with tissue-engineered constructs requires integration with the host tissue and could benefit from leveraging the native tissue's intrinsic healing capacity; however, efforts are limited by a poor understanding of how cartilage repairs minor defects. Here, we investigated the conditions that foster natural cartilage tissue repair to identify strategies that might be exploited to enhance the integration of engineered/grafted cartilage with host tissue. We damaged porcine articular cartilage explants and using a combination of pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies reveal that integration of damaged cartilage surfaces is not driven by neo-matrix synthesis, but rather local depletion of proteoglycans. ADAMTS4 expression and activity are upregulated in injured cartilage explants, but integration could be reduced by inhibiting metalloproteinase activity with TIMP3. These observations suggest that catabolic enzyme-mediated proteoglycan depletion likely allows existing collagen fibrils to undergo cross-linking, fibrillogenesis, or entanglement, driving integration. Catabolic enzymes are often considered pathophysiological markers of osteoarthritis. Our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions and in osteoarthritis, but could also be harnessed in tissue engineering strategies to mediate repair. STATEMENT OF SIGNIFICANCE: Cartilage tissue engineering strategies require graft integration with the surrounding tissue; however, how the native tissue repairs minor injuries is poorly understood. We applied pulsed SILAC-based proteomics, ultrastructural imaging, and catabolic enzyme blocking strategies to a porcine cartilage explant model and found that integration of damaged cartilage surfaces is driven by catabolic enzyme-mediated local depletion of proteoglycans. Although catabolic enzymes have been implicated in cartilage destruction in osteoarthritis, our findings suggest that damage-induced upregulation of metalloproteinase activity may be a part of a healing response that tips towards tissue destruction under pathological conditions. They also suggest that this natural cartilage tissue repair process could be harnessed in tissue engineering strategies to enhance the integration of engineered cartilage with host tissue.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metaloproteases/metabolismo , Osteoartrite/patologia , Proteoglicanas/metabolismo , Suínos , Engenharia Tecidual
6.
Eur J Hum Genet ; 30(3): 282-290, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719684

RESUMO

Craniosynostosis is a birth defect occurring in approximately one in 2000 live births, where premature fusion of the cranial bones inhibits growth of the skull during critical periods of brain development. The resulting changes in skull shape can lead to compression of the brain, causing severe complications. While we have some understanding of the molecular pathology of craniosynostosis, a large proportion of cases are of unknown genetic aetiology. Based on studies in mouse, we previously proposed that the ciliopathy gene Fuz should be considered a candidate craniosynostosis gene. Here, we report a novel variant of FUZ (c.851 G > C, p.(Arg284Pro)) found in monozygotic twins presenting with craniosynostosis. To investigate whether Fuz has a direct role in regulating osteogenic fate and mineralisation, we cultured primary osteoblasts and mouse embryonic fibroblasts (MEFs) from Fuz mutant mice. Loss of Fuz resulted in increased osteoblastic mineralisation. This suggests that FUZ protein normally acts as a negative regulator of osteogenesis. We then used Fuz mutant MEFs, which lose functional primary cilia, to test whether the FUZ p.(Arg284Pro) variant could restore FUZ function during ciliogenesis. We found that expression of the FUZ p.(Arg284Pro) variant was sufficient to partially restore cilia numbers, but did not mediate a comparable response to Hedgehog pathway activation. Together, this suggests the osteogenic effects of FUZ p.(Arg284Pro) do not depend upon initiation of ciliogenesis.


Assuntos
Craniossinostoses , Proteínas do Citoesqueleto/genética , Proteínas Hedgehog , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Craniossinostoses/diagnóstico , Craniossinostoses/genética , Fibroblastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Camundongos
7.
Gene Expr Patterns ; 40: 119183, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34020009

RESUMO

Neuroblastoma is a neural crest-derived paediatric cancer that is the most common and deadly solid extracranial tumour of childhood. It arises when neural crest cells fail to follow their differentiation program to give rise to cells of the sympathoadrenal lineage. These undifferentiated cells can proliferate and migrate, forming tumours mostly found associated with the adrenal glands. Activating mutations in the kinase domain of anaplastic lymphoma kinase (ALK) are linked to high-risk cases, where extensive therapy is ineffective. However, the role of ALK in embryonic development, downstream signal transduction and in metastatic transformation of the neural crest is poorly understood. Here, we demonstrate high conservation of the ALK protein sequences among vertebrates. We then examine alk mRNA expression in the frog models Xenopus laevis and Xenopus tropicalis. Using in situ hybridisation of Xenopus embryos, we show that alk is expressed in neural crest domains throughout development, suggesting a possible role in neuroblastoma initiation. Lastly, RT-qPCR analyses show high levels of alk expression at tadpole stages. Collectively, these data may begin to elucidate how alk functions in neural crest cells and how its deregulation can result in tumorigenesis.


Assuntos
Quinase do Linfoma Anaplásico/genética , Crista Neural/metabolismo , Proteínas de Xenopus/genética , Quinase do Linfoma Anaplásico/metabolismo , Animais , Crista Neural/embriologia , Proteínas de Xenopus/metabolismo , Xenopus laevis
8.
J Vis Exp ; (152)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31633677

RESUMO

Over the past several decades there has been an increased availability of genetically modified mouse models used to mimic human pathologies. However, the ability to study cell movements and differentiation in vivo is still very difficult. Neurocristopathies, or disorders of the neural crest lineage, are particularly challenging to study due to a lack of accessibility of key embryonic stages and the difficulties in separating out the neural crest mesenchyme from adjacent mesodermal mesenchyme. Here, we set out to establish a well-defined, routine protocol for the culture of primary cranial neural crest cells. In our approach we dissect out the mouse neural plate border during the initial neural crest induction stage. The neural plate border region is explanted and cultured. The neural crest cells form in an epithelial sheet surrounding the neural plate border, and by 24 h after explant, begin to delaminate, undergoing an epithelial-mesenchymal transition (EMT) to become fully motile neural crest cells. Due to our two-dimensional culturing approach, the distinct tissue populations (neural plate versus premigratory and migratory neural crest) can be readily distinguished. Using live imaging approaches, we can then identify changes in neural crest induction, EMT and migratory behaviors. The combination of this technique with genetic mutants will be a very powerful approach for understanding normal and pathological neural crest cell biology.


Assuntos
Movimento Celular , Dissecação/métodos , Crista Neural/citologia , Crânio/citologia , Animais , Adesão Celular , Forma Celular , Rastreamento de Células , Células Cultivadas , Embrião de Mamíferos/citologia , Camundongos
9.
Front Mol Neurosci ; 12: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293383

RESUMO

Neural crest cells arise in the embryo from the neural plate border and migrate throughout the body, giving rise to many different tissue types such as bones and cartilage of the face, smooth muscles, neurons, and melanocytes. While studied extensively in animal models, neural crest development and disease have been poorly described in humans due to the challenges in accessing embryonic tissues. In recent years, patient-derived human induced pluripotent stem cells (hiPSCs) have become easier to generate, and several streamlined protocols have enabled robust differentiation of hiPSCs to the neural crest lineage. Thus, a unique opportunity is offered for modeling neurocristopathies using patient specific stem cell lines. In this work, we make use of hiPSCs derived from patients affected by the Bardet-Biedl Syndrome (BBS) ciliopathy. BBS patients often exhibit subclinical craniofacial dysmorphisms that are likely to be associated with the neural crest-derived facial skeleton. We focus on hiPSCs carrying variants in the BBS10 gene, which encodes a protein forming part of a chaperonin-like complex associated with the cilium. Here, we establish a pipeline for profiling hiPSCs during differentiation toward the neural crest stem cell fate. This can be used to characterize the differentiation properties of the neural crest-like cells. Two different BBS10 mutant lines showed a reduction in expression of the characteristic neural crest gene expression profile. Further analysis of both BBS10 mutant lines highlighted the inability of these mutant lines to differentiate toward a neural crest fate, which was also characterized by a decreased WNT and BMP response. Altogether, our study suggests a requirement for wild-type BBS10 in human neural crest development. In the long term, approaches such as the one we describe will allow direct comparison of disease-specific cell lines. This will provide valuable insights into the relationships between genetic background and heterogeneity in cellular models. The possibility of integrating laboratory data with clinical phenotypes will move us toward precision medicine approaches.

10.
Biomed Microdevices ; 21(2): 44, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30963305

RESUMO

In embryogenesis, mesenchymal condensation is a critical event during the formation of many organ systems, including cartilage and bone. During organ formation, mesenchymal cells aggregate and undergo compaction while activating developmental programmes. The final three-dimensional form of the organ, as well as cell fates, can be influenced by the size and shape of the forming condensation. This process is hypothesized to result from multiscale cell interactions within mesenchymal microenvironments; however, these are complex to investigate in vivo. Three-dimensional in vitro models that recapitulate key phenotypes can contribute to our understanding of the microenvironment interactions regulating this fundamental developmental process. Here we devise such models by using image analysis to guide the design of polydimethylsiloxane 3D microstructures as cell culture substrates. These microstructures establish geometrically constrained micromass cultures of mouse embryonic skeletal progenitor cells which influence the development of condensations. We first identify key phenotypes differentiating face and limb bud micromass cultures by linear discriminant analysis of the shape descriptors for condensation morphology, which are used to guide the rational design of a micropatterned polydimethylsiloxane substrate. High-content imaging analysis highlights that the geometry of the microenvironment affects the establishment and growth of condensations. Further, cells commit to establish condensations within the first 5 h; condensations reach their full size within 17 h; following which they increase cell density while maintaining size for at least 7 days. These findings elucidate the value of our model in dissecting key aspects of mesenchymal condensation development.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Animais , Adesão Celular , Dimetilpolisiloxanos/química , Células-Tronco Embrionárias/citologia , Fibronectinas/química , Camundongos , Imagem Molecular , Nylons/química , Propilaminas/química , Silanos/química
11.
Biochem Soc Trans ; 44(6): 1753-1759, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27913686

RESUMO

Defects in the development of the mandible can lead to micrognathia, or small jaw, which manifests in ciliopathic conditions, such as orofaciodigital syndrome, Meckel-Gruber syndrome, and Bardet-Biedl syndrome. Although micrognathia occurs frequently in human and mouse ciliopathies, it has been difficult to pinpoint the underlying cellular causes. In this mini-review, we shed light on the tissue-specific contributions to ciliary dysfunction in the development of the mandible. First, we outline the steps involved in setting up the jaw primordium and subsequent steps in the outgrowth of the mandibular skeleton. We then determine the critical tissue interactions using mice carrying a conditional mutation in the cilia gene Ofd1 Our studies highlight the usefulness of the Ofd1 mouse model and illustrate long-term possibilities for understanding the cellular and biochemical events underlying micrognathia.


Assuntos
Ciliopatias/genética , Modelos Animais de Doenças , Micrognatismo/genética , Mutação , Animais , Cílios/metabolismo , Ciliopatias/metabolismo , Humanos , Mandíbula/embriologia , Mandíbula/metabolismo , Camundongos , Micrognatismo/metabolismo , Proteínas/genética , Proteínas/metabolismo
12.
Dev Biol ; 415(2): 198-215, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875496

RESUMO

The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations.


Assuntos
Anormalidades Craniofaciais/embriologia , Proteínas Hedgehog/fisiologia , Desenvolvimento Maxilofacial/fisiologia , Receptores Patched/fisiologia , Transdução de Sinais , Animais , Movimento Celular , Cílios/fisiologia , Ciliopatias/embriologia , Ciliopatias/genética , Ciliopatias/fisiopatologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/fisiopatologia , Diencéfalo/embriologia , Modelos Animais de Doenças , Ectoderma/embriologia , Endoderma/embriologia , Face/anormalidades , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Holoprosencefalia/embriologia , Holoprosencefalia/genética , Holoprosencefalia/fisiopatologia , Humanos , Desenvolvimento Maxilofacial/genética , Proteínas de Membrana/fisiologia , Crista Neural/citologia , Crista Neural/embriologia , Receptores Patched/genética , Transdução de Sinais/genética , Crânio/anormalidades , Crânio/embriologia
13.
Dev Cell ; 25(6): 623-35, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23806618

RESUMO

Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies.


Assuntos
Transtornos da Motilidade Ciliar/genética , Anormalidades Craniofaciais/genética , Fator 8 de Crescimento de Fibroblasto/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndromes Orofaciodigitais/genética , Animais , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/patologia , Movimento Celular/fisiologia , Transtornos da Motilidade Ciliar/patologia , Anormalidades Craniofaciais/patologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Fator 8 de Crescimento de Fibroblasto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Maxila/anormalidades , Camundongos , Camundongos Mutantes , Crista Neural/anormalidades , Síndromes Orofaciodigitais/patologia , Palato/anormalidades , Fenótipo , Proteína GLI1 em Dedos de Zinco
14.
PLoS One ; 7(11): e50422, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185619

RESUMO

Glycogen Synthase Kinase 3 (GSK-3) is a key player in development, physiology and disease. Because of this, GSK-3 inhibitors are increasingly being explored for a variety of applications. In addition most analyses focus on GSK-3ß and overlook the closely related protein GSK-3α. Here, we describe novel GSK-3α and GSK-3ß mouse alleles that allow us to visualise expression of their respective mRNAs by tracking ß-galactosidase activity. We used these new lacZ alleles to compare expression in the palate and cranial sutures and found that there was indeed differential expression. Furthermore, both are loss of function alleles and can be used to generate homozygous mutant mice; in addition, excision of the lacZ cassette from GSK-3α creates a Cre-dependent tissue-specific knockout. As expected, GSK3α mutants were viable, while GSK3ß mutants died after birth with a complete cleft palate. We also assessed the GSK-3α mutants for cranial and sternal phenotypes and found that they were essentially normal. Finally, we observed gestational lethality in compound GSK-3ß(-/-); GSK3α(+/-) mutants, suggesting that GSK-3 dosage is critical during embryonic development.


Assuntos
Fissura Palatina/genética , Quinase 3 da Glicogênio Sintase/genética , Palato/enzimologia , RNA Mensageiro/biossíntese , Crânio/enzimologia , Alelos , Animais , Fissura Palatina/enzimologia , Fissura Palatina/patologia , Embrião de Mamíferos , Desenvolvimento Embrionário , Feminino , Dosagem de Genes , Expressão Gênica , Genes Reporter , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Heterozigoto , Homozigoto , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Palato/patologia , Gravidez , RNA Mensageiro/genética , Crânio/patologia , beta-Galactosidase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...