Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(13): 136404, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29694190

RESUMO

The transition metal dichalcogenide 1T-TiSe_{2}-two-dimensional layered material undergoing a commensurate 2×2×2 charge density wave (CDW) transition with a weak periodic lattice distortion (PLD) below ≈200 K. Scanning tunneling microscopy (STM) combined with intentionally introduced interstitial Ti atoms allows us to go beyond the usual spatial resolution of STM and to intimately probe the three-dimensional character of the PLD. Furthermore, the inversion-symmetric achiral nature of the CDW in the z direction is revealed, contradicting the claimed existence of helical CDW stacking and associated chiral order. This study paves the way to a simultaneous real-space probing of both charge and structural reconstructions in CDW compounds.

2.
J Phys Condens Matter ; 29(46): 465302, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-28960181

RESUMO

We present a thorough tight-binding analysis of the band structure of a wide variety of lattices belonging to the class of honeycomb and Kagome systems including several mixed forms combining both lattices. The band structure of these systems are made of a combination of dispersive and flat bands. The dispersive bands possess Dirac cones (linear dispersion) at the six corners (K points) of the Brillouin zone although in peculiar cases Dirac cones at the center of the zone [Formula: see text] point) appear. The flat bands can be of different nature. Most of them are tangent to the dispersive bands at the center of the zone but some, for symmetry reasons, do not hybridize with other states. The objective of our work is to provide an analysis of a wide class of so-called ligand-decorated honeycomb Kagome lattices that are observed in a 2D metal-organic framework where the ligand occupy honeycomb sites and the metallic atoms the Kagome sites. We show that the p x -p y graphene model is relevant in these systems and there exists four types of flat bands: Kagome flat (singly degenerate) bands, two kinds of ligand-centered flat bands (A2 like and E like, respectively doubly and singly degenerate) and metal-centered (three fold degenerate) flat bands.

3.
Sci Rep ; 6: 37582, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892485

RESUMO

We report the influence on the superconducting critical temperature Tc in doped SrTiO3 of the substitution of the natural 16O atoms by the heavier isotope 18O. We observe that for a wide range of doping this substitution causes a strong (~50%) enhancement of Tc. Also the magnetic critical field Hc2 is increased by a factor ~2. Such a strong impact on Tc and Hc2, with a sign opposite to conventional superconductors, is unprecedented. The observed effect could be the consequence of strong coupling of the doped electrons to lattice vibrations (phonons), a notion which finds support in numerous optical and photo-emission studies. The unusually large size of the observed isotope effect supports a recent model for superconductivity in these materials based on strong coupling to the ferroelectric soft modes of SrTiO3.

4.
Phys Rev Lett ; 114(24): 247203, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26197003

RESUMO

We demonstrate that a C(60) overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the (60)/Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a function of the (60) coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between (60) p(z) and Co d(z(2)) orbitals. By generalizing these arguments, we also demonstrate that the hybridization of (60) with a Fe(110) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material-ferromagnet systems.

5.
J Phys Condens Matter ; 25(14): 146002, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23478357

RESUMO

Density functional theory (DFT) calculations are carried out to study the electronic and magnetic structure of the (001) surface of chromium. Our aim is to identify and characterize the most prominent electronic surface states and make the connection with the main experimental results. We show that a low dispersive minority spin surface state at the center of the surface Brillouin zone plays a crucial role. This surface state of Δ1 symmetry at 0.58 eV above the Fermi level exhibits a predominantly dz(2) as well as pz orbital character. Local density of states (LDOS) analysis in the vacuum above the surface shows that the sharp feature originating from this surface state persists far away above the surface because of the slow decay rate of the pz wavefunction. Finally, by artificially lowering the surface magnetic moment [Formula: see text] on the outermost surface layer we find excellent agreement with experiments for [Formula: see text]. In addition, we propose that some extra spin polarized scanning tunneling spectroscopy (SP-STS) experiments should be made at smaller tip-surface distances to reveal additional features originating from the majority spin dz(2) surface state.

6.
Nano Lett ; 12(9): 4558-63, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22827486

RESUMO

Using organic materials in spintronic devices raises a lot of expectation for future applications due to their flexibility, low cost, long spin lifetime, and easy functionalization. However, the interfacial hybridization and spin polarization between the organic layer and the ferromagnetic electrodes still has to be understood at the molecular scale. Coupling state-of-the-art spin-polarized scanning tunneling spectroscopy and spin-resolved ab initio calculations, we give the first experimental evidence of the spin splitting of a molecular orbital on a single non magnetic C(60) molecule in contact with a magnetic material, namely, the Cr(001) surface. This hybridized molecular state is responsible for an inversion of sign of the tunneling magnetoresistance depending on energy. This result opens the way to spin filtering through molecular orbitals.


Assuntos
Fulerenos/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Impedância Elétrica , Campos Magnéticos
7.
J Phys Condens Matter ; 22(29): 295502, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21399309

RESUMO

Magnetic, structural and energetic properties of bulk Fe and Cr were studied using first-principles calculations within density functional theory (DFT). We aimed to identify the dependence of these properties on key approximations of DFT, namely the exchange-correlation functional, the pseudopotential and the basis set. We found a smaller effect of pseudopotentials (PPs) on Fe than on Cr. For instance, the local magnetism of Cr was shown to be particularly sensitive to the potentials representing the core electrons, i.e. projector augmented wave and Vanderbilt ultrasoft PPs predict similar results, whereas standard norm-conserving PPs tend to overestimate the local magnetic moments of Cr in bcc Cr and in dilute bcc FeCr alloys. This drawback is suggested to be closely correlated to the overestimation of Cr solution energy in the latter system. On the other hand, we point out that DFT methods with very reduced localized basis sets (LCAO: linear combination of atomic orbitals) give satisfactory results compared with more robust plane-wave approaches. A minimal-basis representation of '3d' electrons comes to be sufficient to describe non-trivial magnetic phases including spin spirals in both fcc Fe and bcc Cr, as well as the experimental magnetic ground state of bcc Cr showing a spin density wave (SDW) state. In addition, a magnetic 'spd' tight binding model within the Stoner formalism was proposed and validated for Fe and Cr. The respective Stoner parameters were obtained by fitting to DFT data. This efficient semiempirical approach was shown to be accurate enough for studying various collinear and non-collinear phases of bulk Fe and Cr. It also enabled a detailed investigation of different polarization states of SDW in bcc Cr, where the longitudinal state was suggested to be the ground state, consistent with existing experimental data.

8.
Phys Rev Lett ; 88(5): 056104, 2002 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-11863754

RESUMO

The stability of metal vicinal surfaces with respect to faceting is investigated using empirical potentials as well as electronic structure calculations. It is proven that for a wide class of empirical potentials all vicinal surfaces between (100) and (111) are unstable at 0 K when the role of third and farther nearest neighbors is negligible. However, electronic structure calculations reveal that the answer concerning the stability of vicinal surfaces is not so clear-cut. Finally, it is shown that surface vibrations at finite temperatures have little effect on the stability of vicinal surfaces.

9.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...