Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 8374-8380, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405469

RESUMO

The use of 3D-printing technology for producing optical devices (i.e., mirrors and waveguides) remains challenging, especially in the UV spectral regime. Gas sensors based on absorbance measurements in the UV region are suitable for determining numerous volatile species in a variety of samples and analytical scenarios. The performance of absorbance-based gas sensors is dependent on the ability of the gas cell to propagate radiation across the absorption path length and facilitate interaction between photons and analytes. In this technical note, we present a 3D-printed substrate-integrated hollow waveguide (iHWG) to be used as a miniaturized and ultralightweight gas cell used in UV gas-sensing schemes. The substrates were fabricated via UV stereolithography and polished, and the light-guiding channel was coated with aluminum for UV reflectivity. This procedure resulted in a surface roughness of 11.2 nm for the reflective coating, yielding a radiation attenuation of 2.25 W/cm2. The 3D-printed iHWG was coupled to a UV light source and a portable USB-connected spectrometer. The sensing device was applied for the quantification of isoprene and acetone, serving as a proof-of-concept study. Detection limits of 0.22 and 0.03% in air were obtained for acetone and isoprene, respectively, with a nearly instantaneous sensor response. The development of portable, low-cost, and ultralightweight UV optical sensors enables their use in a wide range of scenarios ranging from environmental monitoring to clinical/medical applications.

2.
Food Chem ; 406: 135094, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36470085

RESUMO

In this study, we have described a miniaturized, simple, and low-cost device for sulfite determination in beverages by coupling Gas Diffusion Microextraction to paper-based analytical devices. The color change of an acid-base indicator - promoted by the generated gaseous SO2 - impregnated onto the paper surface was monitored in the function of time by video recording using a smartphone. The analytical information was related to the Hue, Saturation, Value (HSV) color space extracted from the video file. The complete analytical platform was built using a 3D printer, allowing the easy fabrication of a low-cost tailored device. Under optimized conditions, a linear relation from 5 to 90 mg L-1 was obtained using 30 µL of the reagent, 1 mL of sample, and 10 min of analysis. The relative standard deviation and the limit of detection were 2.2 % and 1.6 mg L-1, respectively. The method was successfully employed in several beverages, such as juices, soda, and coconut water.


Assuntos
Bebidas , Bebidas Gaseificadas , Bebidas/análise , Bebidas Gaseificadas/análise , Smartphone , Sulfitos/análise , Impressão Tridimensional
3.
Anal Chim Acta ; 1236: 340596, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36396227

RESUMO

The increasing consumption of processed foods demands the usage of chemical preservatives to ensure freshness and extended shelf life. For this purpose, sodium sulfite and its derivatives have been widely used in a variety of food products to inhibit microbial spoilage and for mitigating oxidative decay. However, the excessive consumption of sulfite may cause health problems, thus requiring rapid and accurate analytical methods for the rapid identification of threshold levels. Conventionally, sulfite is volatilized from food samples by acidification followed by trapping of the gaseous SO2 and determination using a suitable analytical technique. Herein, we propose a yet unprecedented reagent-less approach via direct absorbance measurements of gaseous SO2 at 280 nm after sample acidification. The detection system combines a deep-UV LED and a SiC photodiode with a substrate-integrated hollow waveguide (iHWG) gas cell. Absorbance measurements were performed using a log-ratio amplifier circuitry, resulting in noise levels <0.7 mAU. This innovative concept enabled the determination of sulfite in beverages in the range of 25-1000 mg L-1 with suitable linearity (r2 > 0.99) and an analysis time <30 s. The limit of detection (LOD) was calculated at 14.3 mg L-1 (3σ) with an iHWG providing an optical path length of 75 mm. As a proof of concept, this innovative analytical platform was employed for sulfite quantification in concentrated grape juice, coconut water and beer, with suitable accuracy in terms of recovery (83-117%) and favorable comparison with the official Monier-Williams method. Given the inherent modularity and adaptability of the device concept, we anticipate the application of the proposed analytical platform for the in-situ studies addressing sulfite and other volatilized preservatives in a wide variety of food products with tailorable detectability.


Assuntos
Análise de Alimentos , Sulfitos , Indicadores e Reagentes , Sulfitos/análise , Fenômenos Químicos , Bebidas/análise
4.
ACS Meas Sci Au ; 2(1): 39-45, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785589

RESUMO

Ozone is an oxidizing molecule used for disinfecting a wide variety of environments, such as in dental clinics, and has most recently been promoted as a sanitizing agent to prevent coronavirus transmission. The easy access to ozone-generating sources also enables their ubiquitous use. However, exposure to ozone may seriously affect human health by amplifying or inducing respiratory diseases and distress syndromes and has been associated with premature deaths from other diseases. In this scenario, miniaturized, low-cost, and portable optical sensors based on the absorption signature of ozone in the ultraviolet (UV) range of the electromagnetic spectrum are an innovative approach for providing real-time monitoring of gaseous ozone, ensuring the safety of indoor and workplace environments. In this paper, a miniaturized ozone sensor based on the absorption signature of ozone at deep-UV frequencies was developed by integration of so-called substrate-integrated hollow waveguides (iHWG) with a miniaturized ultraviolet lamp and a fiber-optic USB-connected spectrophotometer. The innovative concept of iHWGs facilitates unprecedented compact dimensions with a high degree of flexibility in the optical design of the actual photon absorption path. The proposed device rapidly responded to the presence of ozone (<1 min) and revealed a suitable linearity (r 2 > 0.99) in the evaluated concentration range. The limit of detection was determined at 29.4 ppbv, which renders the device suitable for measurements in the threshold range of the main regulatory agencies. Given the adaptability and modularity of this platform, we anticipate the application of this innovative concept to be equally suitable for the in situ and real-time analysis of other relevant gases providing suitable UV absorption signatures.

5.
ACS Meas Sci Au ; 1(3): 97-109, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36785552

RESUMO

Absorption-based spectroscopy in the mid-infrared (MIR) spectral range (i.e., 2.5-25 µm) is an excellent choice for directly sensing trace gas analytes providing discriminatory molecular information due to inherently specific fundamental vibrational, rovibrational, and rotational transitions. Complimentarily, the miniaturization of optical components has aided the utility of optical sensing techniques in a wide variety of application scenarios that demand compact, portable, easy-to-use, and robust analytical platforms yet providing suitable accuracy, sensitivity, and selectivity. While MIR sensing technologies have clearly benefitted from the development of advanced on-chip light sources such as quantum cascade and interband cascade lasers and equally small MIR detectors, less attention has been paid to the development of modular/tailored waveguide technologies reproducibly and reliably interfacing photons with sample molecules in a compact format. In this context, the first generation of a new type of hollow waveguides gas cells-the so-called substrate-integrated hollow waveguides (iHWG)-with unprecedented compact dimensions published by the research team of Mizaikoff and collaborators has led to a paradigm change in optical transducer technology for gas sensors. Features of iHWGs included an adaptable (i.e., designable) well-defined optical path length via the integration of meandered hollow waveguide structures at virtually any desired dimension and geometry into an otherwise planar substrate, a high degree of robustness, compactness, and cost-effectiveness in fabrication. Moreover, only a few hundred microliters of gas samples are required for analysis, resulting in short sample transient times facilitating a real-time monitoring of gaseous species in virtually any concentration range. In this review, we give an overview of recent advancements and achievements since their introduction eight years ago, focusing on the development of iHWG-based mid-infrared sensor technologies. Highlighted applications ranging from clinical diagnostics to environmental and industrial monitoring scenarios will be contrasted by future trends, challenges, and opportunities for the development of next-generation portable optical gas-sensing platforms that take advantage of a modular and tailorable device design.

6.
Anal Chim Acta ; 1135: 187-203, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33070854

RESUMO

Colorimetric techniques have been developed and used in routine analyses for over a century and apparently all their potentialities have been exhaustively explored. However, colorimetric techniques have gained high visibility in the last two decades mainly because of the development of the miniaturization concept, for example, paper-based analytical devices that mostly employ colorimetric reactions, and by the advances and popularity of image capture instruments. The impressive increase in the use of these devices was followed by the development and enhancement of different modes of color detection to meet the demands of making qualitative, semi-quantitative, and fully quantitative analyses of multiple analytes. Cameras, scanners, and smartphones are now being used for this purpose and have become suitable alternatives for different approaches to colorimetric analysis; this, in addition to advancements in miniaturized devices. On the other hand, recent developments in optoelectronics technologies have launched more powerful, more stable and cheaper light-emitting diodes (LEDs), which once again have become an interesting tool for the design of portable and miniaturized devices based on colored reactions. Here, we present a critical review of recent developments and challenges of colorimetric detection in modern analytical chemistry in the last five years, and present thoughts and insights towards future perspectives in the area to improve the use of colorimetric detection in different application approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...