Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 22(12): 2067-2076, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31595680

RESUMO

Microbial communities drive soil ecosystem function but are also susceptible to environmental disturbances. We investigated whether exposure to manure sourced from cattle either administered or not administered antibiotics affected microbially mediated terrestrial ecosystem function. We quantified changes in microbial community composition via amplicon sequencing, and terrestrial elemental cycling via a stable isotope pulse-chase. Exposure to manure from antibiotic-treated cattle caused: (i) changes in microbial community structure; and (ii) alterations in elemental cycling throughout the terrestrial system. This exposure caused changes in fungal : bacterial ratios, as well as changes in bacterial community structure. Additionally, exposure to manure from cattle treated with pirlimycin resulted in an approximate two-fold increase in ecosystem respiration of recently fixed-carbon, and a greater proportion of recently added nitrogen in plant and soil pools compared to the control manure. Manure from antibiotic-treated cattle therefore affects terrestrial ecosystem function via the soil microbiome, causing decreased ecosystem carbon use efficiency, and altered nitrogen cycling.


Assuntos
Ecossistema , Esterco , Animais , Antibacterianos , Carbono , Bovinos , Gado , Nitrogênio , Solo , Microbiologia do Solo
2.
Environ Microbiol ; 21(7): 2523-2532, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31020762

RESUMO

Unlike other macroecological principles, relationships between productivity and diversity have not been effectively tested for microbial communities. Here we describe an experiment in which the availability of resources to soil bacterial communities was manipulated in a model system, the McMurdo Dry Valleys of Antarctica. Mannitol additions were used to simulate a productivity gradient such that a response in bacterial biomass production, taxonomic diversity and functioning (e.g., enzyme activity) were induced. Resource amendment induced a positive linear response in microbial productivity (P < 0.001) but a unimodal (hump-shaped) response in microbial diversity at multiple taxonomic scales (P = 0.035). Putative oligotrophic (e.g., phyla Nitrospirae and Cyanobacteria) and copiotrophic (e.g., phylum Proteobacteria) taxa were apparent through substantial community turnover along the resource gradient. Soil enzyme activity was inversely related to bacterial biomass but positively related to diversity, suggesting the latter may be a stronger control over enzyme-mediated decomposition. The mechanisms behind this pattern are consistent with macroecological theory of a shift from environmental (e.g., stress tolerance) to biotic (e.g., competition) drivers with increasing resource availability. This evidence is among the first of its kind to document a significant unimodal productivity-diversity relationship for soil bacteria.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Biodiversidade , Biomassa , Ecossistema , Filogenia , Solo/química
4.
Commun Biol ; 2: 62, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30793041

RESUMO

Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplinary investigation to capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry Valleys, encompassing observed landscape heterogeneities across more than 200 km2. Using richness of autotrophic and heterotrophic taxa as a proxy for functional complexity, we linked measured variables in a parsimonious yet comprehensive structural equation model that explained significant variations in biological complexity and identified landscape-scale and fine-scale abiotic factors as the primary drivers of diversity. However, the inclusion of linkages among functional groups was essential for constructing the best-fitting model. Our findings support the notion that biotic interactions make crucial contributions even in an extremely simple ecosystem.


Assuntos
Artrópodes/fisiologia , Cianobactérias/fisiologia , Fungos/fisiologia , Nematoides/fisiologia , Rotíferos/fisiologia , Tardígrados/fisiologia , Animais , Regiões Antárticas , Artrópodes/classificação , Biodiversidade , Cianobactérias/classificação , Ecossistema , Fungos/classificação , Modelos Estatísticos , Nematoides/classificação , Rotíferos/classificação , Tardígrados/classificação
5.
Commun Biol ; 2: 63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30793042

RESUMO

Abiotic factors are major determinants of soil animal distributions and their dominant role is pronounced in extreme ecosystems, with biotic interactions seemingly playing a minor role. We modelled co-occurrence and distribution of the three nematode species that dominate the soil food web of the McMurdo Dry Valleys (Antarctica). Abiotic factors, other biotic groups, and autocorrelation all contributed to structuring nematode species distributions. However, after removing their effects, we found that the presence of the most abundant nematode species greatly, and negatively, affected the probability of detecting one of the other two species. We observed similar patterns in relative abundances for two out of three pairs of species. Harsh abiotic conditions alone are insufficient to explain contemporary nematode distributions whereas the role of negative biotic interactions has been largely underestimated in soil. The future challenge is to understand how the effects of global change on biotic interactions will alter species coexistence.


Assuntos
Artrópodes/fisiologia , Nematoides/fisiologia , Rotíferos/fisiologia , Solo/química , Tardígrados/fisiologia , Animais , Regiões Antárticas , Artrópodes/classificação , Biodiversidade , Cianobactérias/classificação , Cianobactérias/fisiologia , Ecossistema , Fungos/classificação , Fungos/fisiologia , Modelos Estatísticos , Nematoides/classificação , Rotíferos/classificação , Solo/parasitologia , Microbiologia do Solo , Tardígrados/classificação
6.
Front Microbiol ; 9: 1401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018601

RESUMO

Imbalances in C:N:P supply ratios may cause bacterial resource limitations and constrain biogeochemical processes, but the importance of shifts in soil stoichiometry are complicated by the nearly limitless interactions between an immensely rich species pool and a multiple chemical resource forms. To more clearly identify the impact of soil C:N:P on bacteria, we evaluated the cumulative effects of single and coupled long-term nutrient additions (i.e., C as mannitol, N as equal concentrations NH4+ and NO3-, and P as Na3PO4) and water on communities in an Antarctic polar desert, Taylor Valley. Untreated soils possessed relatively low bacterial diversity, simplified organic C sources due to the absence of plants, limited inorganic N, and excess soil P potentially attenuating links between C:N:P. After 6 years of adding resources, an alleviation of C and N colimitation allowed one rare Micrococcaceae, an Arthrobacter species, to dominate, comprising 47% of the total community abundance and elevating soil respiration by 136% relative to untreated soils. The addition of N alone reduced C:N ratios, elevated bacterial richness and diversity, and allowed rare taxa relying on ammonium and nitrite for metabolism to become more abundant [e.g., nitrite oxidizing Nitrospira species (Nitrosomonadaceae), denitrifiers utilizing nitrite (Gemmatimonadaceae) and members of Rhodobacteraceae with a high affinity for ammonium]. Based on community co-occurrence networks, lower C:P ratios in soils following P and CP additions created more diffuse and less connected communities by disrupting 73% of species interactions and selecting for taxa potentially exploiting abundant P. Unlike amended nutrients, water additions alone elicited no lasting impact on communities. Our results suggest that as soils become nutrient rich a wide array of outcomes are possible from species dominance and the deconstruction of species interconnectedness to the maintenance of biodiversity.

7.
Nat Ecol Evol ; 1(9): 1334-1338, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29046542

RESUMO

Amplified climate change in polar regions is significantly altering regional ecosystems, yet there are few long-term records documenting these responses. The McMurdo Dry Valleys (MDV) cold desert ecosystem is the largest ice-free area of Antarctica, comprising soils, glaciers, meltwater streams and permanently ice-covered lakes. Multi-decadal records indicate that the MDV exhibited a distinct ecosystem response to an uncharacteristic austral summer and ensuing climatic shift. A decadal summer cooling phase ended in 2002 with intense glacial melt ('flood year')-a step-change in water availability triggering distinct changes in the ecosystem. Before 2002, the ecosystem exhibited synchronous behaviour: declining stream flow, decreasing lake levels, thickening lake ice cover, decreasing primary production in lakes and streams, and diminishing soil secondary production. Since 2002, summer air temperatures and solar flux have been relatively consistent, leading to lake level rise, lake ice thinning and elevated stream flow. Biological responses varied; one stream cyanobacterial mat type immediately increased production, but another stream mat type, soil invertebrates and lake primary productivity responded asynchronously a few years after 2002. This ecosystem response to a climatic anomaly demonstrates differential biological community responses to substantial perturbations, and the mediation of biological responses to climate change by changes in physical ecosystem properties.


Assuntos
Mudança Climática , Cianobactérias/fisiologia , Ecossistema , Invertebrados/fisiologia , Lagos/análise , Rios , Animais , Regiões Antárticas , Biota , Estações do Ano , Fatores de Tempo
8.
PeerJ ; 5: e3377, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28761776

RESUMO

Primary production is the fundamental source of energy to foodwebs and ecosystems, and is thus an important constraint on soil communities. This coupling is particularly evident in polar terrestrial ecosystems where biological diversity and activity is tightly constrained by edaphic gradients of productivity (e.g., soil moisture, organic carbon availability) and geochemical severity (e.g., pH, electrical conductivity). In the McMurdo Dry Valleys of Antarctica, environmental gradients determine numerous properties of soil communities and yet relatively few estimates of gross or net primary productivity (GPP, NPP) exist for this region. Here we describe a survey utilizing pulse amplitude modulation (PAM) fluorometry to estimate rates of GPP across a broad environmental gradient along with belowground microbial diversity and decomposition. PAM estimates of GPP ranged from an average of 0.27 µmol O2/m2/s in the most arid soils to an average of 6.97 µmol O2/m2/s in the most productive soils, the latter equivalent to 217 g C/m2/y in annual NPP assuming a 60 day growing season. A diversity index of four carbon-acquiring enzyme activities also increased with soil productivity, suggesting that the diversity of organic substrates in mesic environments may be an additional driver of microbial diversity. Overall, soil productivity was a stronger predictor of microbial diversity and enzymatic activity than any estimate of geochemical severity. These results highlight the fundamental role of environmental gradients to control community diversity and the dynamics of ecosystem-scale carbon pools in arid systems.

9.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28356447

RESUMO

Intensifying livestock production to meet the demands of a growing global population coincides with increases in both the administration of veterinary antibiotics and manure inputs to soils. These trends have the potential to increase antibiotic resistance in soil microbial communities. The effect of maintaining increased antibiotic resistance on soil microbial communities and the ecosystem processes they regulate is unknown. We compare soil microbial communities from paired reference and dairy manure-exposed sites across the USA. Given that manure exposure has been shown to elicit increased antibiotic resistance in soil microbial communities, we expect that manure-exposed sites will exhibit (i) compositionally different soil microbial communities, with shifts toward taxa known to exhibit resistance; (ii) greater abundance of antibiotic resistance genes; and (iii) corresponding maintenance of antibiotic resistance would lead to decreased microbial efficiency. We found that bacterial and fungal communities differed between reference and manure-exposed sites. Additionally, the ß-lactam resistance gene ampC was 5.2-fold greater under manure exposure, potentially due to the use of cephalosporin antibiotics in dairy herds. Finally, ampC abundance was positively correlated with indicators of microbial stress, and microbial mass-specific respiration, which increased 2.1-fold under manure exposure. These findings demonstrate that the maintenance of antibiotic resistance associated with manure inputs alters soil microbial communities and ecosystem function.


Assuntos
Resistência Microbiana a Medicamentos , Esterco , Microbiologia do Solo , Animais , Antibacterianos , Bactérias , Bovinos , Fungos , Solo
10.
Front Microbiol ; 7: 1040, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486436

RESUMO

The soils of the McMurdo Dry Valleys, Antarctica are an extreme polar desert, inhabited exclusively by microscopic taxa. This region is on the threshold of anticipated climate change, with glacial melt, permafrost thaw, and the melting of massive buried ice increasing liquid water availability and mobilizing soil nutrients. Experimental water and organic matter (OM) amendments were applied to investigate how these climate change effects may impact the soil communities. To identify active taxa and their functions, total community RNA transcripts were sequenced and annotated, and amended soils were compared with unamended control soils using differential abundance and expression analyses. Overall, taxonomic diversity declined with amendments of water and OM. The domain Bacteria increased with both amendments while Eukaryota declined from 38% of all taxa in control soils to 8 and 11% in water and OM amended soils, respectively. Among bacterial phyla, Actinobacteria (59%) dominated water-amended soils and Firmicutes (45%) dominated OM amended soils. Three bacterial phyla (Actinobacteria, Proteobacteria, and Firmicutes) were primarily responsible for the observed positive functional responses, while eukaryotic taxa experienced the majority (27 of 34) of significant transcript losses. These results indicated that as climate changes in this region, a replacement of endemic taxa adapted to dry, oligotrophic conditions by generalist, copiotrophic taxa is likely.

11.
PLoS One ; 10(10): e0141424, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505627

RESUMO

The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined.


Assuntos
Ailanthus/genética , Espécies Introduzidas , Raízes de Plantas/microbiologia , Poaceae/genética , Rhamnus/genética , Actinobacteria/genética , Ailanthus/microbiologia , Animais , Fungos/genética , Variação Genética , Ciclo do Nitrogênio , Filogenia , Raízes de Plantas/metabolismo , Poaceae/microbiologia , Proteobactérias/genética , RNA Ribossômico 16S/genética , Rhamnus/microbiologia , Microbiologia do Solo , Virginia
12.
Proc Biol Sci ; 282(1809): 20142630, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26019154

RESUMO

The causes of biodiversity patterns are controversial and elusive due to complex environmental variation, covarying changes in communities, and lack of baseline and null theories to differentiate straightforward causes from more complex mechanisms. To address these limitations, we developed general diversity theory integrating metabolic principles with niche-based community assembly. We evaluated this theory by investigating patterns in the diversity and distribution of soil bacteria taxa across four orders of magnitude variation in spatial scale on an Antarctic mountainside in low complexity, highly oligotrophic soils. Our theory predicts that lower temperatures should reduce taxon niche widths along environmental gradients due to decreasing growth rates, and the changing niche widths should lead to contrasting α- and ß-diversity patterns. In accord with the predictions, α-diversity, niche widths and occupancies decreased while ß-diversity increased with increasing elevation and decreasing temperature. The theory also successfully predicts a hump-shaped relationship between α-diversity and pH and a negative relationship between α-diversity and salinity. Thus, a few simple principles explained systematic microbial diversity variation along multiple gradients. Such general theory can be used to disentangle baseline effects from more complex effects of temperature and other variables on biodiversity patterns in a variety of ecosystems and organisms.


Assuntos
Bactérias/metabolismo , Microbiota , Microbiologia do Solo , Regiões Antárticas , Ecossistema
13.
Oecologia ; 177(4): 935-47, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25663370

RESUMO

Many global change drivers chronically alter resource availability in terrestrial ecosystems. Such resource alterations are known to affect aboveground net primary production (ANPP) in the short term; however, it is unknown if patterns of response change through time. We examined the magnitude, direction, and pattern of ANPP responses to a wide range of global change drivers by compiling 73 datasets from long-term (>5 years) experiments that varied by ecosystem type, length of manipulation, and the type of manipulation. Chronic resource alterations resulted in a significant change in ANPP irrespective of ecosystem type, the length of the experiment, and the resource manipulated. However, the pattern of ecosystem response over time varied with ecosystem type and manipulation length. Continuous directional responses were the most common pattern observed in herbaceous-dominated ecosystems. Continuous directional responses also were frequently observed in longer-term experiments (>11 years) and were, in some cases, accompanied by large shifts in community composition. In contrast, stepped responses were common in forests and other ecosystems (salt marshes and dry valleys) and with nutrient manipulations. Our results suggest that the response of ANPP to chronic resource manipulations can be quite variable; however, responses persist once they occur, as few transient responses were observed. Shifts in plant community composition over time could be important determinants of patterns of terrestrial ecosystem sensitivity, but comparative, long-term studies are required to understand how and why ecosystems differ in their sensitivity to chronic resource alterations.


Assuntos
Aclimatação , Biodiversidade , Biomassa , Mudança Climática , Florestas , Plantas , Áreas Alagadas , Ecossistema
14.
FEMS Microbiol Ecol ; 89(2): 415-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24785369

RESUMO

Soil microbial communities of the McMurdo Dry Valleys, Antarctica (MDV) contain representatives from at least fourteen bacterial phyla. However, given low rates of microbial activity, it is unclear whether this richness represents functioning rather than dormant members of the community. We used stable isotope probing (SIP) with (18) O-water to determine if microbial populations grow in MDV soils. Changes in the microbial community were characterized in soils amended with H2 (18) O and H2 (18) O-organic matter. Sequencing the 16S rRNA genes of the heavy and light fractions of the bacterial community DNA shows that DNA of microbial populations was labeled with (18) O-water, indicating these micro-organisms grew in the MDV soils. Significant differences existed in the community composition of the heavy and light fractions of the H2 (18) O and H2 (18) O-organic matter amended samples (Anosim P < 0.05 of weighted Unifrac distance). Control samples and the light DNA fraction of the H2 (18) O amended samples were dominated by representatives of the phyla Deinococcus-Thermus, Proteobacteria, Planctomyces, Gemmatimonadetes, Actinobacteria and Acidobacteria, whereas Proteobacteria were more prevalent in the heavy DNA fractions from the H2 (18) O-water and the H2 (18) O-water-organic matter treatments. Our results indicate that SIP with H2 (18) O can be used to distinguish active bacterial populations even in this low organic matter environment.


Assuntos
Actinobacteria/metabolismo , DNA Bacteriano/metabolismo , Proteobactérias/metabolismo , Microbiologia do Solo , Água/metabolismo , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Regiões Antárticas , Biodiversidade , DNA Bacteriano/genética , Dessecação , Marcação por Isótopo , Isótopos de Oxigênio/metabolismo , Filogenia , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
FEMS Microbiol Ecol ; 89(2): 490-4, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24579975

RESUMO

Edaphic factors such as pH, organic matter, and salinity are often the most significant drivers of diversity patterns in soil bacterial communities. Desert ecosystems in particular are model locations for examining such relationships as food web complexity is low and the soil environment is biogeochemically heterogeneous. Here, we present the findings from a 16S rRNA gene sequencing approach used to observe the differences in diversity and community composition among three divergent soil habitats of the McMurdo Dry Valleys, Antarctica. Results show that alpha diversity is significantly lowered in high pH soils, which contain higher proportions of the phyla Acidobacteria and Actinobacteria, while mesic soils with higher soil organic carbon (and ammonium) content contain high proportions of Nitrospira, a nitrite-oxidizing bacteria. Taxonomic community resolution also had a significant impact on our conclusions, as pH was the primary predictor of phylum-level diversity, while moisture was the most significant predictor of diversity at the genus level. Predictive power also increased with increasing taxonomic resolution, suggesting a potential increase in niche-based drivers of bacterial community composition at such levels.


Assuntos
Acidobacteria/genética , Actinobacteria/genética , Microbiologia do Solo , Regiões Antárticas , Biodiversidade , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , Clima Desértico , Ecossistema , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
16.
FEMS Microbiol Ecol ; 89(2): 347-59, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24646164

RESUMO

Archaea are the least understood members of the microbial community in Antarctic mineral soils. Although their occurrence in Antarctic coastal soils has been previously documented, little is known about their distribution in soils across the McMurdo Dry Valleys, Victoria Land. In this study, terminal-restriction fragment length polymorphism (t-RFLP) analysis and 454 pyrosequencing were coupled with a detailed analysis of soil physicochemical properties to characterize archaeal diversity and identify environmental factors that might shape and maintain archaeal communities in soils of the three southern most McMurdo Dry Valleys (Garwood, Marshall, and Miers Valley). Archaea were successfully detected in all inland and coastal mineral soils tested, revealing a low overall richness (mean of six operational taxonomic units [OTUs] per sample site). However, OTU richness was higher in some soils and this higher richness was positively correlated with soil water content, indicating water as a main driver of archaeal community richness. In total, 18 archaeal OTUs were detected, predominately Thaumarchaeota affiliated with Marine Group 1.1b (> 80% of all archaeal sequences recovered). Less abundant OTUs (2% of all archaeal sequences) were loosely related to members of the phylum Euryarchaeota. This is the first comprehensive study showing a widespread presence and distribution of Archaea in inland Antarctic soils.


Assuntos
Euryarchaeota/genética , Microbiologia do Solo , Solo/química , Adaptação Biológica , Regiões Antárticas , Biodiversidade , Dessecação , Dados de Sequência Molecular , Filogenia , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA
17.
Appl Environ Microbiol ; 80(10): 3034-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610850

RESUMO

Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Carbono/análise , Carbono/metabolismo , Clima Desértico , Ecossistema , Nitrogênio/análise , Nitrogênio/metabolismo , Salinidade , Água/análise , Água/metabolismo
18.
PLoS One ; 8(6): e66103, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23824063

RESUMO

Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between abiotic characteristics and soil bacteria in this unique, microbially dominated environment, and to test the scale dependence of these relationships in a low complexity ecosystem. Samples were collected from dry mineral soils associated with snow patches, which are a significant source of water in this desert environment, at six sites located in the major basins of the Taylor and Wright Valleys. Samples were analyzed for a suite of characteristics including soil moisture, pH, electrical conductivity, soil organic matter, major nutrients and ions, microbial biomass, 16 S rRNA gene richness, and bacterial community structure and composition. Snow patches created local biogeochemical gradients while inter-basin comparisons encompassed landscape scale gradients enabling comparisons of microbial controls at two distinct spatial scales. At the organic carbon rich, mesic, low elevation sites Acidobacteria and Actinobacteria were prevalent, while Firmicutes and Proteobacteria were dominant at the high elevation, low moisture and biomass sites. Microbial parameters were significantly related with soil water content and edaphic characteristics including soil pH, organic matter, and sulfate. However, the magnitude and even the direction of these relationships varied across basins and the application of mixed effects models revealed evidence of significant contextual effects at local and regional scales. The results highlight the importance of the geographic scale of sampling when determining the controls on soil microbial community characteristics.


Assuntos
Bactérias/classificação , Biomassa , Temperatura Baixa , Clima Desértico , Ecossistema , Microbiologia do Solo , Regiões Antárticas , Bactérias/genética , Geografia , RNA Ribossômico 16S/genética
19.
Microb Ecol ; 61(3): 543-56, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21153024

RESUMO

Microorganisms inhabiting stream sediments mediate biogeochemical processes of importance to both aquatic and terrestrial ecosystems. In deserts, the lateral margins of ephemeral stream channels (parafluvial sediments) are dried and rewetted, creating periodically wet conditions that typically enhance microbial activity. However, the influence of water content on microbial community composition and diversity in desert stream sediments is unclear. We sampled stream margins along gradients of wet to dry sediments, measuring geochemistry and bacterial 16S rRNA gene composition, at streams in both a cold (McMurdo Dry Valleys, Antarctica) and hot (Chihuahuan Desert, New Mexico, USA) desert. Across the gradients, sediment water content spanned a wide range (1.6-37.9% w/w), and conductivity was highly variable (12.3-1,380 µS cm(-2)). Bacterial diversity (at 97% sequence similarity) was high and variable, but did not differ significantly between the hot and cold desert and was not correlated with sediment water content. Instead, conductivity was most strongly related to diversity. Water content was strongly related to bacterial 16S rRNA gene community composition, though samples were distributed in wet and dry clusters rather than as assemblages shifting along a gradient. Phylogenetic analyses showed that many taxa from wet sediments at the hot and cold desert site were related to, respectively, halotolerant Gammaproteobacteria, and one family within the Sphingobacteriales (Bacteroidetes), while dry sediments at both sites contained a high proportion of taxa related to the Acidobacteria. These results suggest that bacterial diversity and composition in desert stream sediments is more strongly affected by hydrology and conductivity than temperature.


Assuntos
Bactérias/classificação , Clima Desértico , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Microbiologia da Água , Regiões Antárticas , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodiversidade , DNA Bacteriano/genética , Sedimentos Geológicos/química , New Mexico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Água/análise
20.
Nat Rev Microbiol ; 8(2): 129-38, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20075927

RESUMO

The arid soils of the Antarctic Dry Valleys constitute some of the oldest, coldest, driest and most oligotrophic soils on Earth. Early studies suggested that the Dry Valley soils contained, at best, very low levels of viable microbiota. However, recent applications of molecular methods have revealed a dramatically contrasting picture - a very wide diversity of microbial taxa, many of which are uncultured and taxonomically unique, and a community that seems to be structured solely by abiotic processes. Here we review our understanding of these extreme Antarctic terrestrial microbial communities, with particular emphasis on the factors that are involved in their development, distribution and maintenance in these cold desert environments.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Temperatura Baixa , Microbiologia do Solo , Regiões Antárticas , Bactérias/genética , Mudança Climática , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...