Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 9(12): 2833-42, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25299434

RESUMO

The P2Y14 receptor (P2Y14R), one of eight P2Y G protein-coupled receptors (GPCR), is involved in inflammatory, endocrine, and hypoxic processes and is an attractive pharmaceutical target. The goal of this research is to develop high-affinity P2Y14R fluorescent probes based on the potent and highly selective antagonist 4-(4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl)-2-naphthoic acid (6, PPTN). A model of hP2Y14R based on recent hP2Y12R X-ray structures together with simulated antagonist docking suggested that the piperidine ring is suitable for fluorophore conjugation while preserving affinity. Chain-elongated alkynyl or amino derivatives of 6 for click or amide coupling were synthesized, and their antagonist activities were measured in hP2Y14R-expressing CHO cells. Moreover, a new Alexa Fluor 488 (AF488) containing derivative 30 (MRS4174, Ki = 80 pM) exhibited exceptionally high affinity, as compared to 13 nM for the alkyne precursor 22. A flow cytometry assay employing 30 as a fluorescent probe was used to quantify specific binding to P2Y14R. Known P2Y receptor ligands inhibited binding of 30 with properties consistent with their previously established receptor selectivities and affinities. These results illustrate that potency in this series of 2-naphthoic acid derivatives can be preserved by chain functionalization, leading to highly potent fluorescent molecular probes for P2Y14R. Such conjugates will be useful tools in expanding the SAR of this receptor, which still lacks chemical diversity in its collective ligands. This approach demonstrates the predictive power of GPCR homology modeling and the relevance of newly determined X-ray structures to GPCR medicinal chemistry.


Assuntos
Corantes Fluorescentes/química , Sondas Moleculares/química , Naftalenos/química , Antagonistas do Receptor Purinérgico P2/química , Receptores Purinérgicos P2/química , Animais , Células CHO , Química Click , Cumarínicos/química , Cricetulus , Corantes Fluorescentes/síntese química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Sondas Moleculares/síntese química , Piperidinas/química , Antagonistas do Receptor Purinérgico P2/síntese química , Rodaminas/química , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Xantenos/química
2.
J Biol Chem ; 289(43): 29545-57, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25193662

RESUMO

All peripheral membrane proteins must negotiate unique constraints intrinsic to the biological interface of lipid bilayers and the cytosol. Phospholipase C-ß (PLC-ß) isozymes hydrolyze the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) to propagate diverse intracellular responses that underlie the physiological action of many hormones, neurotransmitters, and growth factors. PLC-ß isozymes are autoinhibited, and several proteins, including Gαq, Gßγ, and Rac1, directly engage distinct regions of these phospholipases to release autoinhibition. To understand this process, we used a novel, soluble analog of PIP2 that increases in fluorescence upon cleavage to monitor phospholipase activity in real time in the absence of membranes or detergents. High concentrations of Gαq or Gß1γ2 did not activate purified PLC-ß3 under these conditions despite their robust capacity to activate PLC-ß3 at membranes. In addition, mutants of PLC-ß3 with crippled autoinhibition dramatically accelerated the hydrolysis of PIP2 in membranes without an equivalent acceleration in the hydrolysis of the soluble analog. Our results illustrate that membranes are integral for the activation of PLC-ß isozymes by diverse modulators, and we propose a model describing membrane-mediated allosterism within PLC-ß isozymes.


Assuntos
Membrana Celular/enzimologia , Fosfolipase C beta/metabolismo , Regulação Alostérica , Animais , Biocatálise , Células COS , Chlorocebus aethiops , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Genes Reporter , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Hidrólise , Isoenzimas/química , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C beta/química , Fosfolipase C beta/isolamento & purificação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solubilidade
3.
Molecules ; 19(4): 4313-25, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24714193

RESUMO

In this study we report the synthesis of C5/C6-fused uridine phosphonates that are structurally related to earlier reported allosteric P2Y2 receptor ligands. A silyl-Hilbert-Johnson reaction of six quinazoline-2,4-(1H,3H)-dione-like base moieties with a suitable ribofuranosephosphonate afforded the desired analogues after full deprotection. In contrast to the parent 5-(4-fluoropheny)uridine phosphonate, the present extended-base uridine phosphonates essentially failed to modulate the P2Y2 receptor.


Assuntos
Organofosfonatos/síntese química , Agonistas do Receptor Purinérgico P2Y/síntese química , Receptores Purinérgicos P2Y2/metabolismo , Uridina/síntese química , Regulação Alostérica , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular Tumoral , Humanos , Ligantes , Organofosfonatos/farmacologia , Agonistas do Receptor Purinérgico P2Y/farmacologia , Quinazolinas/química , Uridina/análogos & derivados , Uridina/farmacologia
4.
J Med Chem ; 57(9): 3874-83, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24712832

RESUMO

Extended N(4)-(3-arylpropyl)oxy derivatives of uridine-5'-triphosphate were synthesized and potently stimulated phospholipase C stimulation in astrocytoma cells expressing G protein-coupled human (h) P2Y receptors (P2YRs) activated by UTP (P2Y2/4R) or UDP (P2Y6R). The potent P2Y4R-selective N(4)-(3-phenylpropyl)oxy agonist was phenyl ring-substituted or replaced with terminal heterocyclic or naphthyl rings with retention of P2YR potency. This broad tolerance for steric bulk in a distal region was not observed for dinucleoside tetraphosphate agonists with both nucleobases substituted. The potent N(4)-(3-(4-methoxyphenyl)-propyl)oxy analogue 19 (EC50: P2Y2R, 47 nM; P2Y4R, 23 nM) was functionalized for chain extension using click tethering of fluorophores as prosthetic groups. The BODIPY 630/650 conjugate 28 (MRS4162) exhibited EC50 values of 70, 66, and 23 nM at the hP2Y2/4/6Rs, respectively, and specifically labeled cells expressing the P2Y6R. Thus, an extended N(4)-(3-arylpropyl)oxy group accessed a structurally permissive region on three Gq-coupled P2YRs, and potency and selectivity were modulated by distal structural changes. This freedom of substitution was utilized to design of a pan-agonist fluorescent probe of a subset of uracil nucleotide-activated hP2YRs.


Assuntos
Iminas/química , Sondas Moleculares , Agonistas do Receptor Purinérgico P2/química , Receptores Purinérgicos P2Y2/efeitos dos fármacos , Uridina Trifosfato/química , Corantes Fluorescentes/química , Humanos , Microscopia de Fluorescência , Agonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2Y2/química , Receptores Purinérgicos P2Y2/classificação
5.
Mol Pharmacol ; 84(1): 41-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592514

RESUMO

The nucleotide-sugar-activated P2Y14 receptor (P2Y14-R) is highly expressed in hematopoietic cells. Although the physiologic functions of this receptor remain undefined, it has been strongly implicated recently in immune and inflammatory responses. Lack of availability of receptor-selective high-affinity antagonists has impeded progress in studies of this and most of the eight nucleotide-activated P2Y receptors. A series of molecules recently were identified by Gauthier et al. (Gauthier et al., 2011) that exhibited antagonist activity at the P2Y14-R. We synthesized one of these molecules, a 4,7-disubstituted 2-naphthoic acid derivative (PPTN), and studied its pharmacological properties in detail. The concentration-effect curve of UDP-glucose for promoting inhibition of adenylyl cyclase in C6 glioma cells stably expressing the P2Y14-R was shifted to the right in a concentration-dependent manner by PPTN. Schild analyses revealed that PPTN-mediated inhibition followed competitive kinetics, with a KB of 434 pM observed. In contrast, 1 µM PPTN exhibited no agonist or antagonist effect at the P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, or P2Y13 receptors. UDP-glucose-promoted chemotaxis of differentiated HL-60 human promyelocytic leukemia cells was blocked by PPTN with a concentration dependence consistent with the KB determined with recombinant P2Y14-R. In contrast, the chemotactic response evoked by the chemoattractant peptide fMetLeuPhe was unaffected by PPTN. UDP-glucose-promoted chemotaxis of freshly isolated human neutrophils also was blocked by PPTN. In summary, this work establishes PPTN as a highly selective high-affinity antagonist of the P2Y14-R that is useful for interrogating the action of this receptor in physiologic systems.


Assuntos
Quimiotaxia/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2/farmacologia , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Glucose/metabolismo , Inibidores de Adenilil Ciclases , Adenilil Ciclases/metabolismo , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Glioma/metabolismo , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Neutrófilos/metabolismo , Agonistas do Receptor Purinérgico P2/farmacologia , Antagonistas do Receptor Purinérgico P2/síntese química , Ratos
6.
Medchemcomm ; 4: 1156-1165, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26161252

RESUMO

4-Alkyloxyimino derivatives of pyrimidine nucleotides display high potency as agonists of certain G protein-coupled P2Y receptors (P2YRs). In an effort to functionalize a P2Y6R agonist for fluorescent labeling, we probed two positions (N4 and γ-phosphate of cytidine derivatives) with various functional groups, including alkynes for click chemistry. Functionalization of extended imino substituents at the 4 position of the pyrimidine nucleobase of CDP preserved P2Y6R potency generally better than γ-phosphoester formation in CTP derivatives. Fluorescent Alexa Fluor 488 conjugate 16 activated the human P2Y6R expressed in 1321N1 human astrocytoma cells with an EC50 of 9 nM, and exhibited high selectivity for this receptor over other uridine nucleotide-activated P2Y receptors. Flow cytometry detected specific labeling with 16 to P2Y6R-expressing but not to wild-type 1321N1 cells. Additionally, confocal microscopy indicated both internalized 16 (t1/2 of 18 min) and surface-bound fluorescence. Known P2Y6R ligands inhibited labeling. Theoretical docking of 16 to a homology model of the P2Y6R predicted electrostatic interactions between the fluorophore and extracellular portion of TM3. Thus, we have identified the N4-benzyloxy group as a structurally permissive site for synthesis of functionalized congeners leading to high affinity molecular probes for studying the P2Y6R.

7.
Bioorg Med Chem ; 20(7): 2304-15, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22386981

RESUMO

We explored the influence of modifications of uridine 5'-methylenephosphonate on biological activity at the human P2Y(2) receptor. Key steps in the synthesis of a series of 5-substituted uridine 5'-methylenephosphonates were the reaction of a suitably protected uridine 5'-aldehyde with [(diethoxyphosphinyl)methylidene]triphenylphosphorane, C-5 bromination and a Suzuki-Miyaura coupling. These analogues behaved as selective agonists at the P2Y(2) receptor, with three analogues exhibiting potencies in the submicromolar range. Although maximal activities observed with the phosphonate analogues were much less than observed with UTP, high concentrations of the phosphonates had no effect on the stimulatory effect of UTP. These results suggest that these phosphonates bind to an allosteric site of the P2Y(2) receptor.


Assuntos
Organofosfonatos/química , Agonistas do Receptor Purinérgico P2Y/síntese química , Receptores Purinérgicos P2Y2/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Organofosfonatos/síntese química , Organofosfonatos/farmacologia , Agonistas do Receptor Purinérgico P2Y/química , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/metabolismo , Nucleotídeos de Uracila/química , Uridina Trifosfato/metabolismo
8.
J Med Chem ; 54(12): 4018-33, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21528910

RESUMO

P2Y(2) and P2Y(4) receptors are G protein-coupled receptors, activated by UTP and dinucleoside tetraphosphates, which are difficult to distinguish pharmacologically for lack of potent and selective ligands. We structurally varied phosphate and uracil moieties in analogues of pyrimidine nucleoside 5'-triphosphates and 5'-tetraphosphate esters. P2Y(4) receptor potency in phospholipase C stimulation in transfected 1321N1 human astrocytoma cells was enhanced in N(4)-alkyloxycytidine derivatives. OH groups on a terminal δ-glucose phosphoester of uridine 5'-tetraphosphate were inverted or substituted with H or F to probe H-bonding effects. N(4)-(Phenylpropoxy)-CTP 16 (MRS4062), Up(4)-[1]3'-deoxy-3'-fluoroglucose 34 (MRS2927), and N(4)-(phenylethoxy)-CTP 15 exhibit ≥10-fold selectivity for human P2Y(4) over P2Y(2) and P2Y(6) receptors (EC(50) values 23, 62, and 73 nM, respectively). δ-3-Chlorophenyl phosphoester 21 of Up(4) activated P2Y(2) but not P2Y(4) receptor. Selected nucleotides tested for chemical and enzymatic stability were much more stable than UTP. Agonist docking at CXCR4-based P2Y(2) and P2Y(4) receptor models indicated greater steric tolerance of N(4)-phenylpropoxy group at P2Y(4). Thus, distal structural changes modulate potency, selectivity, and stability of extended uridine tetraphosphate derivatives, and we report the first P2Y(4) receptor-selective agonists.


Assuntos
Agonistas do Receptor Purinérgico P2/síntese química , Receptores Purinérgicos P2/metabolismo , Nucleotídeos de Uracila/síntese química , Sequência de Aminoácidos , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Ésteres , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Agonistas do Receptor Purinérgico P2/química , Agonistas do Receptor Purinérgico P2/farmacologia , Ensaio Radioligante , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Nucleotídeos de Uracila/química , Nucleotídeos de Uracila/farmacologia
10.
J Med Chem ; 53(11): 4488-501, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20446735

RESUMO

The P2Y(6) receptor is a cytoprotective G-protein-coupled receptor (GPCR) activated by UDP (EC(50) = 0.30 microM). We compared and combined modifications to enhance P2Y(6) receptor agonist selectivity, including ribose ring constraint, 5-iodo and 4-alkyloxyimino modifications, and phosphate modifications such as alpha,beta-methylene and extension of the terminal phosphate group into gamma-esters of UTP analogues. The conformationally constrained (S)-methanocarba-UDP is a full agonist (EC(50) = 0.042 microM). 4-Methoxyimino modification of pyrimidine enhanced P2Y(6), preserved P2Y(2) and P2Y(4), and abolished P2Y(14) receptor potency, in the appropriate nucleotide. N(4)-Benzyloxy-CDP (15, MRS2964) and N(4)-methoxy-Cp(3)U (23, MRS2957) were potent, selective P2Y(6) receptor agonists (EC(50) of 0.026 and 0.012 microM, respectively). A hydrophobic binding region near the nucleobase was explored with receptor modeling and docking. UTP-gamma-aryl and cycloalkyl phosphoesters displayed only intermediate P2Y(6) receptor potency but had enhanced stability in acid and cell membranes. UTP-glucose was inactive, but its (S)-methanocarba analogue and N(4)-methoxycytidine 5'-triphospho-gamma-[1]glucose were active (EC(50) of 2.47 and 0.18 microM, respectively). Thus, the potency, selectivity, and stability of pyrimidine nucleotides as P2Y(6) receptor agonists may be enhanced by modest structural changes.


Assuntos
Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/farmacologia , Ésteres/química , Iminas/química , Polifosfatos/química , Agonistas do Receptor Purinérgico P2 , Pirimidinas/química , Ribonucleotídeos/química , Ribonucleotídeos/farmacologia , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Conformação Proteica , Receptores Purinérgicos P2/química , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Bioconjug Chem ; 21(2): 372-84, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20121074

RESUMO

We previously synthesized a series of potent and selective A(3) adenosine receptor (AR) agonists (North-methanocarba nucleoside 5'-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed "click" chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A(3)AR activation was preserved in these multivalent conjugates, which bound with apparent K(i) of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A(3)AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A(3) and P2Y(14) receptors (via amide-linked uridine-5'-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.


Assuntos
Agonistas do Receptor A3 de Adenosina , Dendrímeros/química , Receptores Purinérgicos P2/metabolismo , Uridina Difosfato Glucose/química , Uridina Difosfato Glucose/farmacologia , Adenosina/química , Alcinos/química , Amidas/química , Animais , Células CHO , Catálise , Linhagem Celular Tumoral , Cobre/química , Cricetinae , Cricetulus , Humanos , Ligantes , Neuroimunomodulação/efeitos dos fármacos , Triazóis/química
12.
J Med Chem ; 53(1): 471-80, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19902968

RESUMO

Uridine-5'-diphosphoglucose (UDPG) activates the P2Y(14) receptor, a neuroimmune system GPCR. P2Y(14) receptor tolerates glucose substitution with small alkyl or aryl groups or its truncation to uridine 5'-diphosphate (UDP), a full agonist at the human P2Y(14) receptor expressed in HEK-293 cells. 2-Thiouracil derivatives displayed selectivity for activation of the human P2Y(14) vs the P2Y(6) receptor, such as 2-thio-UDP 4 (EC(50) = 1.92 nM at P2Y(14), 224-fold selectivity vs P2Y(6)) and its beta-propyloxy ester 18. EC(50) values of the beta-methyl ester of UDP and its 2-thio analogue were 2730 and 56 nM, respectively. beta-tert-Butyl ester of 4 was 11-fold more potent than UDPG, but beta-aryloxy or larger, branched beta-alkyl esters, such as cyclohexyl, were less potent. Ribose replacement of UDP with a rigid North or South methanocarba (bicyclo[3.1.0]hexane) group abolished P2Y(14) receptor agonist activity. alpha,beta-Methylene and difluoromethylene groups were well tolerated at the P2Y(14) receptor and are expected to provide enhanced stability in biological systems. alpha,beta-Methylene-2-thio-UDP 11 (EC(50) = 0.92 nM) was 2160-fold selective versus P2Y(6). Thus, these nucleotides and their congeners may serve as important pharmacological probes for the detection and characterization of the P2Y(14) receptor.


Assuntos
Hexoses/química , Agonistas do Receptor Purinérgico P2 , Uridina Difosfato Glucose/análogos & derivados , Uridina Difosfato Glucose/farmacologia , Alquilação , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Conformação Molecular , Receptores Purinérgicos P2/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Uridina Difosfato Glucose/química
13.
Mol Pharmacol ; 76(6): 1341-8, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19759354

RESUMO

The P2Y14 receptor was initially identified as a G protein-coupled receptor activated by UDP-glucose and other nucleotide sugars. We have developed several cell lines that stably express the human P2Y14 receptor, allowing facile examination of its coupling to native Gi family G proteins and their associated downstream signaling pathways (J Pharmacol Exp Ther 330:162-168, 2009). In the current study, we examined P2Y14 receptor-dependent inhibition of cyclic AMP accumulation in human embryonic kidney (HEK) 293, C6 glioma, and Chinese hamster ovary (CHO) cells stably expressing this receptor. Not only was the human P2Y14 receptor activated by UDP-glucose, but it also was activated by UDP. The apparent efficacies of UDP and UDP-glucose were similar, and the EC50 values (74, 33, and 29 nM) for UDP-dependent activation of the P2Y14 receptor in HEK293, CHO, and C6 glioma cells, respectively, were similar to the EC50 values (323, 132, and 72 nM) observed for UDP-glucose. UDP and UDP-glucose also stimulated extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in P2Y14 receptor-expressing HEK293 cells but not in wild-type HEK293 cells. A series of analogs of UDP were potent P2Y14 receptor agonists, but the naturally occurring nucleoside diphosphates, CDP, GDP, and ADP exhibited agonist potencies over 100-fold less than that observed with UDP. Two UDP analogs were identified that selectively activate the P2Y14 receptor over the UDP-activated P2Y6 receptor, and these molecules stimulated phosphorylation of ERK1/2 in differentiated human HL-60 promyeloleukemia cells, which natively express the P2Y14 receptor but had no effect in wild-type HL-60 cells, which do not express the receptor. We conclude that UDP is an important cognate agonist of the human P2Y14 receptor.


Assuntos
Inibidores de Adenilil Ciclases , Proteínas de Ligação ao GTP/fisiologia , Agonistas do Receptor Purinérgico P2 , Difosfato de Uridina/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Células CHO , Linhagem Celular , Colforsina/farmacologia , Cricetinae , Cricetulus , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Células HL-60 , Humanos , Receptores Purinérgicos P2 , Transdução de Sinais/efeitos dos fármacos , Uridina Difosfato Glucose/farmacologia
16.
J Bone Joint Surg Am ; 90(3): 560-4, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310706

RESUMO

BACKGROUND: External fixation is widely used for trauma and reconstruction of the lower extremity. External fixator devices spanning the ankle or portions of the foot often utilize pins placed across the metatarsal bases. While this forefoot fixation is occasionally necessary to achieve reduction and alignment, it is also useful to prevent an equinus contracture. We undertook an anatomical study to evaluate the safety of pins placed across the bases of the first and second metatarsals, spanning the first intermetarsal space. METHODS: Under fluoroscopy, a single 4.0-mm Schanz pin was advanced percutaneously from medial to lateral across the bases of the first and second metatarsals in ten cadaver feet. This was accomplished in a fashion identical to the application of typical forefoot external fixation as described in the literature. Specimens were then dissected. Injury to the deep plantar branch of the dorsalis pedis artery, when present, was recorded. When injury was not present, the distance from the pin to the deep plantar branch was recorded. RESULTS: In five of the ten feet, the deep plantar branch of the dorsalis pedis artery was lacerated by the transmetatarsal pin. In four feet, the pin contacted the artery but did not visibly damage it. In the remaining foot, the pin was noted to be only 4 mm from the artery. Any pin with a starting point within 18 mm of the first metatarsocuneiform joint placed the artery at risk. CONCLUSIONS: Placement of external fixation pins through the proximal bases of the first and second metatarsals, within 2 cm of the first tarsometatarsal joint, consistently places the deep plantar branch of the dorsalis pedis artery at risk. Given the clinical importance of this artery, transmetatarsal pinning in this fashion is not advised. Other methods of obtaining forefoot or midfoot external fixation are recommended in order to avoid vascular injury.


Assuntos
Traumatismos do Tornozelo/cirurgia , Pinos Ortopédicos/efeitos adversos , Fixadores Externos , Pé/irrigação sanguínea , Fixação de Fratura , Metatarso/cirurgia , Humanos , Lacerações/etiologia , Artérias da Tíbia/anatomia & histologia
17.
J Orthop Trauma ; 21(6): 418-21, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17621003

RESUMO

The authors report a case of a complete posterior dislocation of the acromioclavicular (AC) joint with an ipsilateral medial epiphyseal clavicular fracture in a 20-year-old male. Open reduction was indicated because a maintained closed reduction of the AC joint was unsuccessful, and the described treatment maintained a successful reduction.


Assuntos
Articulação Acromioclavicular/lesões , Clavícula/lesões , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/cirurgia , Luxações Articulares/cirurgia , Articulação Acromioclavicular/diagnóstico por imagem , Adulto , Clavícula/diagnóstico por imagem , Fraturas Ósseas/diagnóstico por imagem , Humanos , Luxações Articulares/diagnóstico por imagem , Masculino , Radiografia , Resultado do Tratamento
19.
Endocrinology ; 148(7): 3356-63, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17446186

RESUMO

Chronic inflammation contributes to vascular insulin resistance and endothelial dysfunction. Systemic infusion of TNF-alpha abrogates insulin's action to enhance skeletal muscle microvascular perfusion. In skeletal muscle TNF-alpha induces insulin resistance via the p38 MAPK pathway. To examine whether p38 MAPK also regulates TNF-alpha-induced vascular insulin resistance, bovine aortic endothelial cells (bAECs) were incubated+/-TNF-alpha (5 ng/ml) for 6 h in the presence or absence of SB203580 (p38 MAPK specific inhibitor, 10 microM) after serum starvation for 10 h. For the last 30 min, cells were treated+/-1 nM insulin, and insulin receptor substrate (IRS)-1, Akt, endothelial nitric oxide synthase (eNOS), p38 MAPK, ERK1/2, c-Jun N-terminal kinase, and AMP-activated protein kinase (AMPK) phosphorylation, and eNOS activity were measured. TNF-alpha increased p38 MAPK phosphorylation, potently stimulated IRS-1 serine phosphorylation, and blunted insulin-stimulated IRS-1 tyrosine and Akt phosphorylation and eNOS activity. TNF-alpha also potently stimulated the phosphorylation of ERK1/2 and AMPK. Treatment with SB203580 decreased p38 MAPK phosphorylation back to the baseline and restored insulin sensitivity of IRS-1 tyrosine and Akt phosphorylation and eNOS activity in TNF-alpha-treated bAECs without affecting TNF-alpha-induced ERK1/2 and AMPK phosphorylation. We conclude that in cultured bAECs, TNF-alpha induces insulin resistance in the phosphatidylinositol 3-kinase/Akt/eNOS pathway via a p38 MAPK-dependent mechanism and enhances ERK1/2 and AMPK phosphorylation independent of the p38 MAPK pathway. This differential modulation of TNF-alpha's actions by p38 MAPK suggests that p38 MAPK plays a key role in TNF-alpha-mediated vascular insulin resistance and may contribute to the generalized endothelial dysfunction seen in type 2 diabetes mellitus and the cardiometabolic syndrome.


Assuntos
Células Endoteliais/efeitos dos fármacos , Insulina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Immunoblotting , Imunoprecipitação , Proteínas Substratos do Receptor de Insulina , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Complexos Multienzimáticos/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Tempo
20.
J Orthop Trauma ; 19(3): 198-200, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15758674

RESUMO

The intact meniscus provides protection for healing of tibial plateau fractures, prevention of early posttraumatic arthritis, and maintenance of knee stability. However, tibial plateau fractures may have associated meniscal injury that may impair this function. In addition, the meniscotibial ligaments are often divided during submeniscal arthrotomy for exposure. Repair or reattachment of the meniscus can be difficult. We describe the technique of using Kirschner wire holes in proximal tibial plates for anchoring the meniscus.


Assuntos
Fraturas da Tíbia/cirurgia , Lesões do Menisco Tibial , Humanos , Meniscos Tibiais/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...