Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Toxicol ; 6: 100173, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826685

RESUMO

In recent decades, industrialization, intensive agriculture, and urban development have severely impacted marine environments, compromising the health of aquatic and terrestrial organisms. Inadequate disposal results in hundreds of tons of plastic products released annually into the environment, which degrade into microplastics (MPs), posing health risks due to their ability to biomagnify and bioaccumulate. Among these, polystyrene MPs (PS-MPs) are significant pollutants in marine ecosystems, widely studied for their reproductive toxicological effects. This research aimed to evaluate the reproductive cytotoxic and genotoxic effects of PS-MPs on sea urchin (Paracentrotus lividus) spermatozoa in vitro. Results showed that PS-MPs significantly reduced sperm viability and motility without altering morphology, and induced sperm DNA fragmentation mediated by reactive oxygen species production. Furthermore, head-to-head agglutination of the spermatozoa was observed exclusively in the sample treated with the plastic agents, indicating the ability of microplastics to adhere to the surface of sperm cells and form aggregates with microplastics on other sperm cells, thereby impeding movement and reducing reproductive potential. These findings suggest that PS-MPs can adversely affect the quality of sea urchin sperm, potentially impacting reproductive events.

2.
Genes (Basel) ; 15(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38790168

RESUMO

Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.


Assuntos
Biomarcadores , Infertilidade Masculina , Estresse Oxidativo , Espécies Reativas de Oxigênio , Masculino , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/diagnóstico , Biomarcadores/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidação de Lipídeos/genética , Espermatozoides/metabolismo , Dano ao DNA , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Espermatogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA