Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Space Phys ; 126(7): e2021JA029149, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35860602

RESUMO

As space-based charged particle measurement pushes the technical envelope, resolution, both spatially and temporally, is ever improving. As such, the knowledge of the associated error must also improve. We present a method for correlating data collected from multiple sensors at different times in order to estimate the pointing error of each sensor. The method is demonstrated using flight data from the Dual Ion Spectrometer suite, part of the Fast Plasma Investigation on the NASA's Magnetospheric Multiscale mission. By looking at signals with sharp features in the direction of spacecraft spin, the relative error in look direction between sensors can be estimated with sub-degree precision, roughly 20 times better than the native resolution in the azimuthal (spin) direction. These sharp features appear in nature often enough that a sufficiently large sample size can be identified, using an automated filter of routine science data, to calibrate the system, or post correct measured data. The relative pointing error can then be trended over time to monitor the evolution/aging of the measurement system. These data inform calibration/correction methods, should the error grow to a point where science quality is adversely affected.

2.
Rev Sci Instrum ; 83(3): 033303, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22462915

RESUMO

We report our findings comparing the geometric factor (GF) as determined from simulations and laboratory measurements of the new Dual Electron Spectrometer (DES) being developed at NASA Goddard Space Flight Center as part of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission. Particle simulations are increasingly playing an essential role in the design and calibration of electrostatic analyzers, facilitating the identification and mitigation of the many sources of systematic error present in laboratory calibration. While equations for laboratory measurement of the GF have been described in the literature, these are not directly applicable to simulation since the two are carried out under substantially different assumptions and conditions, making direct comparison very challenging. Starting from first principles, we derive generalized expressions for the determination of the GF in simulation and laboratory, and discuss how we have estimated errors in both cases. Finally, we apply these equations to the new DES instrument and show that the results agree within errors. Thus we show that the techniques presented here will produce consistent results between laboratory and simulation, and present the first description of the performance of the new DES instrument in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...