Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 56(2): 935-953, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29804232

RESUMO

Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75NTR expression. Genetic normalization of p75NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75NTR could be promising to prevent motor deficits in HD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Corpo Estriado/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Receptores de Fator de Crescimento Neural/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/metabolismo , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Doença de Huntington/genética , Camundongos Transgênicos , Neurônios/metabolismo , Receptor trkB/metabolismo
2.
Sci Rep ; 8(1): 16096, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382133

RESUMO

Microglia, the main resident immune cells in the CNS, are thought to participate in the pathogenesis of various neurological disorders. LPS and LPS + IFNγ are stimuli that are widely used to activate microglia. However, the transcriptomic profiles of microglia treated with LPS and LPS + IFNγ have not been properly compared. Here, we treated murine primary microglial cultures with LPS or LPS + IFNγ for 6 hours and then performed RNA-Sequencing. Gene expression patterns induced by the treatments were obtained by WGCNA and 11 different expression profiles were found, showing differential responses to LPS and LPS + IFNγ in many genes. Interestingly, a subset of genes involved in Parkinson's, Alzheimer's and Huntington's disease were downregulated by both treatments. By DESeq analysis we found differentially upregulated and downregulated genes that confirmed LPS and LPS + IFNγ as inducers of microglial pro-inflammatory responses, but also highlighted their involvement in specific cell functions. In response to LPS, microglia tended to be more proliferative, pro-inflammatory and phagocytic; whereas LPS + IFNγ inhibited genes were involved in pain, cell division and, unexpectedly, production of some inflammatory mediators. In summary, this study provides a detailed description of the transcriptome of LPS- and LPS + IFNγ treated primary microglial cultures. It may be useful to determine whether these in vitro phenotypes resemble microglia in in vivo pathological conditions.


Assuntos
Perfilação da Expressão Gênica , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Análise de Sequência de RNA , Transcriptoma/genética , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Modelos Biológicos , Fases de Leitura Aberta/genética , Fenótipo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Transcriptoma/efeitos dos fármacos
3.
Pflugers Arch ; 470(9): 1359-1376, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29797067

RESUMO

Kv7 channels determine the resting membrane potential of neurons and regulate their excitability. Even though dysfunction of Kv7 channels has been linked to several debilitating childhood neuronal disorders, the ontogeny of the constituent genes, which encode Kv7 channels (KNCQ), and expression of their subunits have been largely unexplored. Here, we show that developmentally regulated expression of specific KCNQ mRNA and Kv7 channel subunits in mouse and human striatum is crucial to the functional maturation of mouse striatal neurons and human-induced pluripotent stem cell-derived neurons. This demonstrates their pivotal role in normal development and maturation, the knowledge of which can now be harnessed to synchronise and accelerate neuronal differentiation of stem cell-derived neurons, enhancing their utility for disease modelling and drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio KCNQ1/metabolismo , Neurônios/metabolismo , Regulação para Cima/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Potenciais da Membrana/fisiologia , Camundongos , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...