Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2654: 453-462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106200

RESUMO

The immune synapse is a key structure organizing T-cell activation against foreign entities, such as cancer cells expressing neoantigens. One crucial step in this activation cascade is the intracellular Ca2+ ([Ca2+]i) response that shapes T cells for proliferation, differentiation, and cytotoxicity. The development of calcium probes coupled to real-time fluorescence microscopy has allowed a close study of this phenomenon in vitro. Such systems have provided valuable insights on the consequences of Ca2+ responses on T cells, including cytotoxicity and cytoskeletal remodeling. However, in vitro models do not recapitulate the tissue architecture that T cells come in contact with in vivo. Thus, there is a growing necessity for better understanding the factors influencing Ca2+ response in T cells including in genetically modified T cells (e.g., CAR T cells). In this methodology chapter, we describe an experimental system to measure [Ca2+]i signals of CAR T cells loaded with the calcium probe Fluo-4 on fresh tumor slices. Combined with confocal fluorescent imaging, this model offers an approach to image early T-cell activation in a three-dimensional (3D) tissue environment.


Assuntos
Cálcio , Neoplasias , Humanos , Microscopia Confocal/métodos , Linfócitos T , Microscopia de Fluorescência/métodos
2.
Cancers (Basel) ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230721

RESUMO

Neglected for a long time in cancer, B cells and ASCs have recently emerged as critical actors in the tumor microenvironment, with important roles in shaping the antitumor immune response. ASCs indeed exert a major influence on tumor growth, patient survival, and response to therapies. The mechanisms underlying their pro- vs. anti-tumor roles are beginning to be elucidated, revealing the contributions of their secreted antibodies as well as of their emerging noncanonical functions. Here, concentrating mostly on ovarian and breast cancers, we summarize the current knowledge on the heterogeneity of tumor-infiltrating ASCs, we discuss their possible local or systemic origin in relation to their immunoglobulin repertoire, and we review the different mechanisms by which antibody (Ab) subclasses and isoforms differentially impact tumor cells and anti-tumor immunity. We also discuss the emerging roles of cytokines and other immune modulators produced by ASCs in cancer. Finally, we propose strategies to manipulate the tumor ASC compartment to improve cancer therapies.

3.
Cancer Immunol Res ; 9(12): 1425-1438, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34686489

RESUMO

Adoptive transfer of T cells expressing chimeric antigen receptors (CAR) has shown remarkable clinical efficacy against advanced B-cell malignancies but not yet against solid tumors. Here, we used fluorescent imaging microscopy and ex vivo assays to compare the early functional responses (migration, Ca2+, and cytotoxicity) of CD20 and EGFR CAR T cells upon contact with malignant B cells and carcinoma cells. Our results indicated that CD20 CAR T cells rapidly form productive ICAM-1-dependent conjugates with their targets. By comparison, EGFR CAR T cells only initially interacted with a subset of carcinoma cells located at the periphery of tumor islets. After this initial peripheral activation, EGFR CAR T cells progressively relocated to the center of tumor cell regions. The analysis of this two-step entry process showed that activated CAR T cells triggered the upregulation of ICAM-1 on tumor cells in an IFNγ-dependent pathway. The ICAM-1/LFA-1 interaction interference, through antibody or shRNA blockade, prevented CAR T-cell enrichment in tumor islets. The requirement for IFNγ and ICAM-1 to enable CAR T-cell entry into tumor islets is of significance for improving CAR T-cell therapy in solid tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interferon gama/metabolismo , Neoplasias Pulmonares/genética , Receptores de Antígenos Quiméricos/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Elife ; 102021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106045

RESUMO

Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.


Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Colágeno/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/metabolismo , Microambiente Tumoral/fisiologia , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Proteína-Lisina 6-Oxidase/metabolismo
5.
Crit Rev Oncol Hematol ; 157: 103172, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33278676

RESUMO

Immunotherapy has been a revolution in cancer management in the metastatic setting. This has led to a prompt evaluation of such therapies in earlier stages. This article discusses the still limited amount of data finding the rationale to assess such therapy in this setting and reviews preclinical and clinical data available. Overall, neoadjuvant immunotherapy is a promising approach for the treatment of cancers and the rationale supporting its use is strong. Neoadjuvant immunotherapy resulted, in the majority of clinical trials, in improved pathologic complete response rates with a favorable toxicity profile and no delay in surgery. Various regimens were effective: inhibitory immune check-point blockers (IICPB) alone, combination of PD-1 and CTLA-4 inhibitors, combination of chemotherapy (CT) and IICPB, phased CT and IICPB (either IICPB before CT or IICPB after CT). Yet the question whether neoadjuvant immunotherapy will benefit to patients in terms of disease-free and, ultimately, overall survival remains unknown.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Humanos , Fatores Imunológicos , Imunoterapia , Terapia Neoadjuvante , Neoplasias/tratamento farmacológico
6.
J Immunol ; 205(3): 608-618, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580933

RESUMO

Dendritic cells (DCs) are professional APCs, which sample Ags in the periphery and migrate to the lymph node where they activate T cells. DCs can also present native Ag to B cells through interactions observed both in vitro and in vivo. However, the mechanisms of Ag transfer and B cell activation by DCs remain incompletely understood. In this study, we report that murine DCs are an important cell transporter of Ag from the periphery to the lymph node B cell zone and also potent inducers of B cell activation both in vivo and in vitro. Importantly, we highlight a novel extracellular mechanism of B cell activation by DCs. In this study, we demonstrate that Ag released upon DC regurgitation is sufficient to efficiently induce early B cell activation, which is BCR driven and mechanistically dependent on the nuclear accumulation of the transcription factor NF-κB/cRel. Thus, our study provides new mechanistic insights into Ag delivery and B cell activation modalities by DCs and a promising approach for targeting NF-κB/cRel pathway to modulate the DC-elicited B cell responses.


Assuntos
Apresentação de Antígeno , Antígenos/imunologia , Linfócitos B/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária , NF-kappa B/imunologia , Proteínas Proto-Oncogênicas c-rel/imunologia , Transdução de Sinais/imunologia , Animais , Antígenos/genética , Feminino , Camundongos , Camundongos Transgênicos , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-rel/genética
7.
Proc Natl Acad Sci U S A ; 115(17): E4041-E4050, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632196

RESUMO

In a large proportion of cancer patients, CD8 T cells are excluded from the vicinity of cancer cells. The inability of CD8 T cells to reach tumor cells is considered an important mechanism of resistance to cancer immunotherapy. We show that, in human lung squamous-cell carcinomas, exclusion of CD8 T cells from tumor islets is correlated with a poor clinical outcome and with a low lymphocyte motility, as assessed by dynamic imaging on fresh tumor slices. In the tumor stroma, macrophages mediate lymphocyte trapping by forming long-lasting interactions with CD8 T cells. Using a mouse tumor model with well-defined stromal and tumor cell areas, macrophages were depleted with PLX3397, an inhibitor of colony-stimulating factor-1 receptor (CSF-1R). Our results reveal that a CSF-1R blockade enhances CD8 T cell migration and infiltration into tumor islets. Although this treatment alone has minor effects on tumor growth, its combination with anti-PD-1 therapy further increases the accumulation of CD8 T cells in close contact with malignant cells and delays tumor progression. These data suggest that the reduction of macrophage-mediated T cell exclusion increases tumor surveillance by CD8 T cells and renders tumors more responsive to anti-PD-1 treatment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/imunologia , Macrófagos/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Aminopiridinas/farmacologia , Animais , Linfócitos T CD8-Positivos/patologia , Carcinoma de Células Escamosas/patologia , Seguimentos , Macrófagos/patologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Pirróis/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Receptor de Fator Estimulador de Colônias de Macrófagos/imunologia , Estudos Retrospectivos , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Vis Exp ; (130)2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29364247

RESUMO

CD8 T cell are key players in the fight against cancer. In order for CD8 T cells to kill tumor cells they need to enter into the tumor, migrate within the tumor microenvironment and respond adequately to tumor antigens. The recent development of improved imaging approaches, such as 2-photon microscopy, and the use of powerful mouse tumor models have shed light on some of the mechanisms that regulate anti-tumor T cell activities. Whereas such systems have provided valuable insights, they do not always predict human responses. In human, our knowledge in the field mainly comes from a description of fixed tumor samples from human patients, as well as in vitro studies. However, in vitro models lack the complex three-dimensional tumor milieu and, therefore, are incomplete approximations of in vivo T cell activities. Fresh slices made from explanted tissue represent a complex multi-cellular tumor environment that can act as an important link between co-cultured studies and animal models. Originally set up in murine lymph nodes1 and previously described in a JoVE article2, this approach has now been transposed to human tumors to examine the dynamics of both plated3 as well as resident T cells4. Here, a protocol for the preparation of human lung tumor slices, immunostaining of resident CD8 T and tumor cells, and tracking of CD8 T lymphocytes within the tumor microenvironment using confocal microscopy is described. This system is uniquely placed to screen for novel immunotherapy agents favoring T cell migration in tumors.


Assuntos
Linfócitos T CD8-Positivos/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Microscopia Confocal/métodos , Linfócitos T CD8-Positivos/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...