Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 127(4): 043604, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355937

RESUMO

General solutions to the quantum Rabi model involve subspaces with an unbounded number of photons. However, for the multiqubit multimode case, we find special solutions with at most one photon for an arbitrary number of qubits and photon modes. Such solutions exist for arbitrary single qubit-photon coupling strength with constant eigenenergy, while still being qubit-photon entangled states. Taking advantage of their peculiarities and the reach of the ultrastrong coupling regime, we propose an adiabatic scheme for the fast and deterministic generation of a two-qubit Bell state and arbitrary single-photon multimode W states with nonadiabatic error less than 1%. Finally, we propose a superconducting circuit design to catch and release the W states, and shows the experimental feasibility of the multimode multiqubit quantum Rabi model.

2.
Sci Rep ; 9(1): 12928, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506446

RESUMO

An analog computer makes use of continuously changeable quantities of a system, such as its electrical, mechanical, or hydraulic properties, to solve a given problem. While these devices are usually computationally more powerful than their digital counterparts, they suffer from analog noise which does not allow for error control. We will focus on analog computers based on active electrical networks comprised of resistors, capacitors, and operational amplifiers which are capable of simulating any linear ordinary differential equation. However, the class of nonlinear dynamics they can solve is limited. In this work, by adding memristors to the electrical network, we show that the analog computer can simulate a large variety of linear and nonlinear integro-differential equations by carefully choosing the conductance and the dynamics of the memristor state variable. We study the performance of these analog computers by simulating integro-differential models related to fluid dynamics, nonlinear Volterra equations for population growth, and quantum models describing non-Markovian memory effects, among others. Finally, we perform stability tests by considering imperfect analog components, obtaining robust solutions with up to 13% relative error for relevant timescales.

3.
Sci Rep ; 7(1): 4157, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28646203

RESUMO

We study quantum state transfer between two qubits coupled to a common quantum bus that is constituted by an ultrastrong coupled light-matter system. By tuning both qubit frequencies on resonance with a forbidden transition in the mediating system, we demonstrate a high-fidelity swap operation even though the quantum bus is thermally populated. We discuss a possible physical implementation in a realistic circuit QED scheme that leads to the multimode Dicke model. This proposal may have applications on hot quantum information processing within the context of ultrastrong coupling regime of light-matter interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA