Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(26): 8883-8892, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37358389

RESUMO

The MOF material NU-1000 was employed to host Ni tripodal complexes prepared from new organometallic precursors [HNi(κ4(E,P,P,P)-E(o-C6H4CH2PPh2)3], E = Si (Ni-1), Ge (Ni-2). The new heterogeneous catalytic materials, Ni-1@NU-1000 and Ni-2@NU-1000, show the advantages of both homogeneous and heterogeneous catalysts. They catalyze the hydroboration of aldehydes and ketones more efficiently than the homogeneous Ni-1 and Ni-2, under aerobic conditions and show recyclability.

2.
Dalton Trans ; 49(9): 2786-2793, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32043501

RESUMO

The confinement of small amounts of benzene in InOF-1 (Bz@InOF-1) shows a contradictory behavior in the capture of CO2 and SO2. While the capture of CO2 is increased 1.6 times, compared to the pristine material, the capture of SO2 shows a considerable decrease. To elucidate these behaviors, the interactions of CO2 and SO2 with Bz@InOF-1 were studied by DFT periodical calculations postulating a plausible explanation: (a) in the case of benzene and CO2, these molecules do not compete for the preferential adsorption sites within InOF-1, providing a cooperative CO2 capture enhancement and (b) benzene and SO2 strongly compete for these preferential adsorption sites inside the MOF material, reducing the total SO2 capture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA