Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(7): 230451, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37448478

RESUMO

Dietary variation within and across species drives the eco-evolutionary responsiveness of genes necessary to metabolize nutrients and other components. Recent evidence from humans and other mammals suggests that sugar-rich diets of floral nectar and ripe fruit have favoured mutations in, and functional preservation of, the ADH7 gene, which encodes the ADH class 4 enzyme responsible for metabolizing ethanol. Here we interrogate a large, comparative dataset of ADH7 gene sequence variation, including that underlying the amino acid residue located at the key site (294) that regulates the affinity of ADH7 for ethanol. Our analyses span 171 mammal species, including 59 newly sequenced. We report extensive variation, especially among frugivorous and nectarivorous bats, with potential for functional impact. We also report widespread variation in the retention and probable pseudogenization of ADH7. However, we find little statistical evidence of an overarching impact of dietary behaviour on putative ADH7 function or presence of derived alleles at site 294 across mammals, which suggests that the evolution of ADH7 is shaped by complex factors. Our study reports extensive new diversity in a gene of longstanding ecological interest, offers new sources of variation to be explored in functional assays in future study, and advances our understanding of the processes of molecular evolution.

2.
Front Neuroanat ; 12: 66, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30135648

RESUMO

A well-developed visual system can provide significant sensory information to guide motor behavior, especially in fruit-eating bats, which usually use echolocation to navigate at high speed through cluttered environments during foraging. Relatively few studies have been performed to elucidate the organization of the visual system in bats. The present work provides an extensive morphological description of the retinal projections in the subcortical visual nuclei in the flat-faced fruit-eating bat (Artibeus planirostris) using anterograde transport of the eye-injected cholera toxin B subunit (CTb), followed by morphometrical and stereological analyses. Regarding the cytoarchitecture, the dorsal lateral geniculate nucleus (dLGN) was homogeneous, with no evident lamination. However, the retinal projection contained two layers that had significantly different marking intensities and a massive contralateral input. The superior colliculus (SC) was identified as a laminar structure composed of seven layers, and the retinal input was only observed on the contralateral side, targeting two most superficial layers. The medial pretectal nucleus (MPT), olivary pretectal nucleus (OPT), anterior pretectal nucleus (APT), posterior pretectal nucleus (PPT) and nucleus of the optic tract (NOT) were comprised the pretectal nuclear complex (PNT). Only the APT lacked a retinal input, which was predominantly contralateral in all other nuclei. Our results showed the morphometrical and stereological features of a bat species for the first time.

3.
Mol Ecol ; 27(18): 3627-3640, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30059176

RESUMO

Bats are a diverse radiation of mammals of enduring interest for understanding the evolution of sensory specialization. Colour vision variation among species has previously been linked to roosting preferences and echolocation form in the suborder Yinpterochiroptera, yet questions remain about the roles of diet and habitat in shaping bat visual ecology. We sequenced OPN1SW and OPN1LW opsin genes for 20 species of leaf-nosed bats (family Phyllostomidae; suborder Yangochiroptera) with diverse roosting and dietary ecologies, along with one vespertilionid species (Myotis lavali). OPN1LW genes appear intact for all species, and predicted spectral tuning of long-wavelength opsins varied among lineages. OPN1SW genes appear intact and under purifying selection for Myotis lavali and most phyllostomid bats, with two exceptions: (a) We found evidence of ancient OPN1SW pseudogenization in the vampire bat lineage, and loss-of-function mutations in all three species of extant vampire bats; (b) we additionally found a recent, independently derived OPN1SW pseudogene in Lonchophylla mordax, a cave-roosting species. These mutations in leaf-nosed bats are independent of the OPN1SW pseudogenization events previously reported in Yinpterochiropterans. Therefore, the evolution of monochromacy (complete colour blindness) has occurred in both suborders of bats and under various evolutionary drivers; we find independent support for the hypothesis that obligate cave roosting drives colour vision loss. We additionally suggest that haematophagous dietary specialization and corresponding selection on nonvisual senses led to loss of colour vision through evolutionary sensory trade-off. Our results underscore the evolutionary plasticity of opsins among nocturnal mammals.


Assuntos
Cavernas , Quirópteros/fisiologia , Visão de Cores , Dieta/veterinária , Evolução Molecular , Animais , Brasil , Quirópteros/genética , Opsinas/genética , Filogenia
4.
Front Neuroanat ; 12: 36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867376

RESUMO

In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN, classically known as the master circadian clock, generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity. Strategies on the use of time by animals can provide important clues about how some species are adapted to competitive process in nature. Few studies have provided information about temporal niche in bats with special attention on the neural substrate underlies circadian rhythms. The aim of this study was to investigate these circadian centers with respect to their cytoarchitecture, chemical content and retinal projections in the flat-faced fruit-eating bat (Artibeus planirostris), a chiropteran endemic to South America. Unlike other species of phyllostomid bats, the flat-faced fruit-eating bat's peak of activity occurs 5 h after sunset. This raises several questions about the structure and function of the SCN and IGL in this species. We carried out a mapping of the retinal projections and cytoarchitectural study of the nuclei using qualitative and quantitative approaches. Based on relative optical density findings, the SCN and IGL of the flat-faced fruit-eating bat receive bilaterally symmetric retinal innervation. The SCN contains vasopressin (VP) and vasoactive intestinal polypeptide (VIP) neurons with neuropeptide Y (NPY), serotonin (5-HT) and glutamic acid decarboxylase (GAD) immunopositive fibers/terminals and is marked by intense glial fibrillary acidic protein (GFAP) immunoreactivity. The IGL contains NPY perikarya as well as GAD and 5-HT immunopositive terminals and is characterized by dense GFAP immunostaining. In addition, stereological tools were combined with Nissl stained sections to estimate the volumes of the circadian centers. Taken together, the present results in the flat-faced fruit-eating bat reveal some differences compared to other bat species which might explain the divergence in the hourly activity among bats in order to reduce the competitive potential and resource partitioning in nature.

5.
Ecology ; 99(2): 498, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29399824

RESUMO

Measures of traits are the basis of functional biological diversity. Numerous works consider mean species-level measures of traits while ignoring individual variance within species. However, there is a large amount of variation within species and it is increasingly apparent that it is important to consider trait variation not only between species, but also within species. Mammals are an interesting group for investigating trait-based approaches because they play diverse and important ecological functions (e.g., pollination, seed dispersal, predation, grazing) that are correlated with functional traits. Here we compile a data set comprising morphological and life history information of 279 mammal species from 39,850 individuals of 388 populations ranging from -5.83 to -29.75 decimal degrees of latitude and -34.82 to -56.73 decimal degrees of longitude in the Atlantic forest of South America. We present trait information from 16,840 individuals of 181 species of non-volant mammals (Rodentia, Didelphimorphia, Carnivora, Primates, Cingulata, Artiodactyla, Pilosa, Lagomorpha, Perissodactyla) and from 23,010 individuals of 98 species of volant mammals (Chiroptera). The traits reported include body mass, age, sex, reproductive stage, as well as the geographic coordinates of sampling for all taxa. Moreover, we gathered information on forearm length for bats and body length and tail length for rodents and marsupials. No copyright restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications. We also request that researchers and teachers inform us of how they are using the data.

6.
Ecology ; 98(12): 3227, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28875505

RESUMO

Bats are the second most diverse mammal order and they provide vital ecosystem functions (e.g., pollination, seed dispersal, and nutrient flux in caves) and services (e.g., crop pest suppression). Bats are also important vectors of infectious diseases, harboring more than 100 different virus types. In the present study, we compiled information on bat communities from the Atlantic Forests of South America, a species-rich biome that is highly threatened by habitat loss and fragmentation. The ATLANTIC BATS data set comprises 135 quantitative studies carried out in 205 sites, which cover most vegetation types of the tropical and subtropical Atlantic Forest: dense ombrophilous forest, mixed ombrophilous forest, semideciduous forest, deciduous forest, savanna, steppe, and open ombrophilous forest. The data set includes information on more than 90,000 captures of 98 bat species of eight families. Species richness averaged 12.1 per site, with a median value of 10 species (ranging from 1 to 53 species). Six species occurred in more than 50% of the communities: Artibeus lituratus, Carollia perspicillata, Sturnira lilium, Artibeus fimbriatus, Glossophaga soricina, and Platyrrhinus lineatus. The number of captures divided by sampling effort, a proxy for abundance, varied from 0.000001 to 0.77 individuals·h-1 ·m-2 (0.04 ± 0.007 individuals·h-1 ·m-2 ). Our data set reveals a hyper-dominance of eight species that together that comprise 80% of all captures: Platyrrhinus lineatus (2.3%), Molossus molossus (2.8%), Artibeus obscurus (3.4%), Artibeus planirostris (5.2%), Artibeus fimbriatus (7%), Sturnira lilium (14.5%), Carollia perspicillata (15.6%), and Artibeus lituratus (29.2%).


Assuntos
Quirópteros/fisiologia , Florestas , Animais , Brasil , Ecossistema , América do Sul
7.
Biota neotrop. (Online, Ed. port.) ; 17(2): e20170351, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-838995

RESUMO

Abstract The state of Rio Grande do Norte is considered a data gap for bat species records in Brazil. The state is also currently target of large economic projects with potential impacts on bats, especially wind farms and mining enterprises. In addition, Rio Grande do Norte has few conservation units in which there is no systematic study on bat fauna. The Nísia Floresta National Forest (NFNF), a federally protected area of 174 hectares, is located in the eastern coast of Rio Grande do Norte and corresponds to one of the last remnants of Atlantic Forest in the state, in its northernmost limits. A bat inventory was conducted in NFNF using mist nets set at ground level, from sunset to sunrise, from December 2011 to December 2012, totaling 25 sampling nights. We captured 1,379 bats belonging to four families and 16 species. Artibeus planirostris (Phyllostomidae) was the most frequently captured species (n = 685; 50%), followed by Myotis lavali (Vespertilionidae) (n = 248; 18%) and Phyllostomus discolor (Phyllostomidae) (n = 147; 11%). Peropteryx leucoptera, Phyllostomus discolor, Phyllostomus hastatus, Lophostoma brasiliense, Lasiurus blossevillii, Myotis lavali, and Promops nasutus are new records for Rio Grande do Norte, increasing the current number of bat species from 25 to 32 in this state. Further inventories, especially using acoustic surveys with bat detectors, might add more species to the NFNF bat list.


Resumo O estado do Rio Grande do Norte é considerado uma lacuna de informações sobre ocorrência de morcegos no Brasil. O estado também é atualmente alvo de grandes empreendimentos com potencial impacto sobre a quiropterofauna, especialmente no setor de energia eólica e mineração. Além disso, apresenta poucas unidades de conservação, e estas não possuem sua quiropterofauna estudada de maneira sistematizada. A Floresta Nacional de Nísia Floresta (FNNF), uma unidade de conservação federal de 174 hectares, localiza-se na costa leste do Rio Grande do Norte e corresponde a um dos últimos remanescentes de Mata Atlântica no estado e no limite norte do bioma. Foi realizado um inventário de morcegos na FNNF com a utilização de redes de neblina armadas no nível do solo, do por do sol ao amanhecer, de dezembro de 2011 a dezembro de 2012, totalizando 25 noites de amostragem. Nós capturamos 1379 morcegos pertencentes a quatro famílias e 16 espécies. Artibeus planirostris (Phyllostomidae) foi a espécie mais frequentemente capturada (n = 685; 50%), seguida por Myotis lavali (Vespertilionidae) (n = 248; 18%) e Phyllostomus discolor (Phyllostomidae) (n = 147; 11%). Peropteryx leucoptera, Phyllostomus discolor, Phyllostomus hastatus, Lophostoma brasiliense, Lasiurus blossevillii, Myotis lavali e Promops nasutus são novos registros para o Rio Grande do Norte, aumentando o número atual de espécies de morcegos no estado de 25 para 32. Inventários adicionais, especialmente utilizando amostragens acústicas com detectores de morcegos, tendem a acrescentar novas espécies à lista de morcegos da FNNF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...