Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 37(12): 3563-3575, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32722789

RESUMO

Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named snake venom metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an "SVMP-like" function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary noncatalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, whereas the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on nonhomologous genes, yielding alternate biochemical components.


Assuntos
Evolução Molecular , Metaloproteinases da Matriz/metabolismo , Venenos de Serpentes/enzimologia , Serpentes/metabolismo , Animais , Metaloproteinases da Matriz/genética , Fenótipo , Proteólise , Venenos de Serpentes/genética , Serpentes/genética , Transcriptoma
2.
Artigo em Inglês | MEDLINE | ID: mdl-28242657

RESUMO

A novel transposon belonging to the Tn3-like family was identified on the chromosome of a commensal strain of Pseudomonas aeruginosa sequence type 2343 (ET02). Tn6350 is 7,367 bp long and harbors eight open reading frames (ORFs), an ATPase (IS481 family), a transposase (DDE catalytic type), a Tn3 resolvase, three hypothetical proteins, and genes encoding the new pyocin S8 with its immunity protein. We show that pyocin S8 displays activity against carbapenemase-producing P. aeruginosa, including IMP-1, SPM-1, VIM-1, GES-5, and KPC-2 producers.


Assuntos
Elementos de DNA Transponíveis/genética , Pseudomonas aeruginosa/genética , Piocinas/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , beta-Lactamases/biossíntese , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...