Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEMS Microbiol Lett ; 366(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860585

RESUMO

Bradyrhizobium diazoefficiens CPAC 7 and Bradyrhizobium japonicum CPAC 15 are broadly used in commercial inoculants in Brazil, contributing to most of the nitrogen required by the soybean crop. These strains differ in their symbiotic properties: CPAC 7 is more efficient in fixing nitrogen, whereas CPAC 15 is more competitive. Comparative genomics revealed many transposases close to genes associated with symbiosis in the symbiotic island of these strains. Given the importance that insertion sequences (IS) elements have to bacterial genomes, we focused on identifying the local impact of these elements in the genomes of these and other related Bradyrhizobium strains to further understand their phenotypic differences. Analyses were performed using bioinformatics approaches. We found IS elements disrupting and inserted at regulatory regions of genes involved in symbiosis. Further comparative analyses with 21 Bradyrhizobium genomes revealed insertional polymorphism with distinguishing patterns between B. diazoefficiens and B. japonicum lineages. Finally, 13 of these potentially impacted genes are differentially expressed under symbiotic conditions in B. diazoefficiens USDA 110. Thus, IS elements are associated with the diversity of Bradyrhizobium, possibly by providing mechanisms for natural variation of symbiotic effectiveness.


Assuntos
Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Elementos de DNA Transponíveis/genética , Glycine max/microbiologia , Biologia Computacional , Ilhas Genômicas/genética , Fixação de Nitrogênio/genética , Fixação de Nitrogênio/fisiologia
2.
J Comput Biol ; 24(11): 1125-1133, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28570142

RESUMO

Recently, there has been an increase in the number of whole bacterial genomes sequenced, mainly due to the advancing of next-generation sequencing technologies. In face of this, there is a need to provide new analytical alternatives that can follow this advance. Given our current knowledge about the genomic plasticity of bacteria and that those genomic regions can uncover important features about this microorganism, our goal was to develop a fast methodology based on maximum entropy (ME) to guide the researcher to regions that could be prioritized during the analysis. This methodology was compared with other available methods. In addition, ME was applied to eight different bacterial genera. The methodology consists of two main steps: processing the nucleotide sequence and ME calculation. We applied ME to Xanthomonas axonopodis pv. citri 306 (XAC) and Xanthomonas campestris pv. campestris ATCC 33913 (XCC), both of which have their anomalous regions well documented. We then compared our results against those from Alien Hunter, HGT-DB, Islander, IslandPath, and SIGI-HMM. ME was shown to be superior in terms of efficiency and analysis duration. Besides, ME only needs the genome sequence in FASTA format as input. The proposed strategy based on ME is able to help in bacterial genome exploration. This is a simple and fast strategy for individual genomes in comparison with other available methods, without relying on previous annotation and alignments. This methodology can also be a new option in the early stages of analysis of newly sequenced bacterial genomes.


Assuntos
DNA Bacteriano/genética , Entropia , Genoma Bacteriano , Genômica/métodos , Xanthomonas/genética , Xanthomonas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...