Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38417478

RESUMO

BACKGROUND: The cannabis plant contains several cannabinoids, and many terpenoids that give cannabis its distinctive flavoring and aroma. Δ9-Tetrahydrocannabinol (Δ9-THC) is the plant's primary psychoactive constituent. Given the abuse liability of Δ9-THC, assessment of the psychoactive effects of minor cannabinoids and other plant constituents is important, especially for compounds that may be used medicinally. This study sought to evaluate select minor cannabinoids and terpenes for Δ9-THC-like psychoactivity in mouse Δ9-THC drug discrimination and determine their binding affinities at CB1 and CB2 receptors. METHODS: Δ9-THC, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), cannabichromenevarin (CBCV), Δ8-tetrahydrocannabinol (Δ8-THC), (6aR,9R)-Δ10-tetrahydrocannabinol [(6aR,9R)-Δ10-THC], Δ9-tetrahydrocannabinol varin (THCV), ß-caryophyllene (BC), and ß-caryophyllene oxide (BCO) were examined. RESULTS: All minor cannabinoids showed measurable cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor binding, with CBC, CBCV, and CBD, showing the weakest CB1 receptor binding affinity. BC and BCO exhibited negligible affinity for both CB1 and CB2 receptors. In drug discrimination, only Δ8-THC fully substituted for Δ9-THC, while CBN and (6aR,9R)-Δ10-THC partially substituted for Δ9-THC. THCV and BCO did not alter the discriminative stimulus effects of Δ9-THC. CONCLUSION: In summary, only some of myriad cannabinoids and other chemicals found in the cannabis plant bind potently to the identified cannabinoid receptors. Further, only four of the compounds tested herein [Δ9-THC, Δ8-THC, (6aR,9R)-Δ10-THC, and CBN] produced Δ9-THC-like discriminative stimulus effects, suggesting they may possess cannabimimetic subjective effects. Given that the medicinal properties of phytocannabinoids and terpenoids are being investigated scientifically, delineation of their potential adverse effects, including their ability to produce Δ9-THC-like intoxication, is crucial.


Assuntos
Canabidiol , Canabinoides , Cannabis , Camundongos , Animais , Dronabinol/farmacologia , Terpenos/farmacologia , Canabinoides/farmacologia , Canabinoides/metabolismo , Cannabis/metabolismo , Canabidiol/farmacologia , Canabinol/farmacologia
2.
J Am Chem Soc ; 145(25): 13581-13591, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37314891

RESUMO

The resorcinol-terpene phytocannabinoid template is a privileged scaffold for the development of diverse therapeutics targeting the endocannabinoid system. Axially chiral cannabinols (axCBNs) are unnatural cannabinols (CBNs) that bear an additional C10 substituent, which twists the cannabinol biaryl framework out of planarity creating an axis of chirality. This unique structural modification is hypothesized to enhance both the physical and biological properties of cannabinoid ligands, thus ushering in the next generation of endocannabinoid system chemical probes and cannabinoid-inspired leads for drug development. In this full report, we describe the philosophy guiding the design of axCBNs as well as several synthetic strategies for their construction. We also introduce a second class of axially chiral cannabinoids inspired by cannabidiol (CBD), termed axially chiral cannabidiols (axCBDs). Finally, we provide an analysis of axially chiral cannabinoid (axCannabinoid) atropisomerism, which spans two classes (class 1 and 3 atropisomers), and provide first evidence that axCannabinoids retain─and in some cases, strengthen─affinity and functional activity at cannabinoid receptors. Together, these findings present a promising new direction for the design of novel cannabinoid ligands for drug discovery and exploration of the complex endocannabinoid system.


Assuntos
Canabidiol , Canabinoides , Endocanabinoides , Receptores de Canabinoides , Ligantes , Canabinol
3.
Pharmacol Res Perspect ; 10(1): e00901, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041297

RESUMO

Neutral antagonists of GPCRs remain relatively rare-indeed, a large majority of GPCR antagonists are actually inverse agonists. The synthetic cannabinoid receptor agonist (SCRA) EG-018 was recently reported as a low efficacy cannabinoid receptor agonist. Here we report a comparative characterization of EG-018 and 13 analogues along with extant putative neutral antagonists of CB1 . In HEK cells stably expressing human CB1 , assays for inhibition of cAMP were performed by real-time BRET biosensor (CAMYEL), G protein cycling was quantified by [35 S]GTPγS binding, and stimulation of pERK was characterized by AlphaLISA (PerkinElmer). Signaling outcomes for the EG-018 analogues were highly variable, ranging from moderate efficacy agonism with high potency, to marginal agonism at lower potency. As predicted by differing pathway sensitivities to differences in ligand efficacy, most EG-018-based compounds were completely inactive in pERK alone. The lowest efficacy analogue in cAMP assays, 157, had utility in antagonism assay paradigms. Developing neutral antagonists of the CB1 receptor has been a long-standing research goal, and such compounds would have utility both as research tools and in therapeutics. Although these results emphasize again the importance of system factors in determining signaling outcomes, some compounds characterized in this study appear among the lowest efficacy agonists described to date and therefore suggest that development of neutral antagonists is an achievable goal for CB1 .


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Carbazóis/farmacologia , Naftalenos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Agonistas de Receptores de Canabinoides/síntese química , Agonistas de Receptores de Canabinoides/química , Carbazóis/síntese química , Carbazóis/química , AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Naftalenos/síntese química , Naftalenos/química , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Artigo em Inglês | MEDLINE | ID: mdl-32810571

RESUMO

Cannabis edibles are becoming more common in an increasingly diverse population of users, and the impact of first pass metabolism on cannabis's pharmacological profile across age and sex is not well understood. The present study examined the impact of age, sex and rodent species on the effects of intraperitoneal (i.p.) delta-9-tetrahydrocannabinol (THC) and its primary psychoactive metabolite, 11-OH-THC, in rodent models of psychoactivity and molecular assays of cannabinoid receptor type-1 (CB1) pharmacology. Like oral THC, i.p. THC also undergoes first pass metabolism. In both species and sexes, 11-OH-THC exhibited marginally higher affinity (~1.5 fold) than THC and both served as partial agonists in [35S]GTPγS binding with equivalent potency; 11-OH-THC exhibited slightly greater efficacy in rat brain tissue. In ICR mice, 11-OH-THC exhibited greater potency than THC in assays of catalepsy (7- to 15-fold) and hypothermia (7- to 31-fold). Further, 11-OH-THC was more potent in THC drug discrimination (7- to 9-fold) in C57Bl/6 J mice, with THC-like discriminative stimulus effects being CB1-, but not CB2-, mediated. THC's discriminative stimulus also was stable across age in mice, as its potency did not change over the course of the experiment (~17 months). While sex differences in THC's effects were not revealed in mice, THC was significantly more potent in females Sprague-Dawley rats than in males trained to discriminate THC from vehicle. This study demonstrates a cross-species in the psychoactive effects of i.p. THC across sex that may be related to differential metabolism of THC into its psychoactive metabolite 11-OH-THC, suggesting that species is a crucial design consideration in the preclinical study of phytocannabinoids.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Dronabinol/farmacologia , Tempo de Reação/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Caracteres Sexuais , Fatores Etários , Animais , Agonistas de Receptores de Canabinoides/metabolismo , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Dronabinol/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Receptor CB1 de Canabinoide/metabolismo , Roedores , Especificidade da Espécie
5.
Pharmacol Biochem Behav ; 193: 172918, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32247816

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) possess high abuse liability and complex toxicological profiles, making them serious threats to public health. EG-018 is a SCRA that has been detected in both illicit products and human samples, but it has received little attention to date. The current studies investigated EG-018 at human CB1 and CB2 receptors expressed in HEK293 cells in [3H]CP55,940 competition binding, [35S]GTPγS binding and forskolin-stimulated cAMP production. EG-018 was also tested in vivo for its ability to produce cannabimimetic and abuse-related effects in the cannabinoid tetrad and THC drug discrimination, respectively. EG-018 exhibited high affinity at CB1 (21 nM) and at CB2 (7 nM), but in contrast to typical SCRAs, behaved as a weak partial agonist in [35S]GTPγS binding, exhibiting lower efficacy but greater potency, than that of THC at CB1 and similar potency and efficacy at CB2. EG-018 inhibited forskolin-stimulated cAMP with similar efficacy but lower potency, compared to THC, which was likely due to high receptor density facilitating saturation of this signaling pathway. In mice, EG-018 (100 mg/kg, 30 min) administered intraperitoneally (i.p.) did not produce effects in the tetrad or drug discrimination nor did it shift THC's ED50 value in drug discrimination when administered before THC, suggesting EG-018 has negligible occupancy of brain CB1 receptors following i.p. administration. Following intravenous (i.v.) administration, EG-018 (56 mg/kg) produced hypomotility, catalepsy, and hypothermia, but only catalepsy was blocked by the selective CB1 antagonist rimonabant (3 mg/kg, i.v.). Additional studies of EG-018 and its structural analogues could provide further insight into how cannabinoids exert efficacy through the cannabinoid receptors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacocinética , Carbazóis/farmacocinética , Locomoção/efeitos dos fármacos , Microssomos/efeitos dos fármacos , Naftalenos/farmacocinética , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Transdução de Sinais/efeitos dos fármacos , Medicamentos Sintéticos/farmacocinética , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Carbazóis/farmacologia , AMP Cíclico/metabolismo , Dronabinol/farmacologia , Células HEK293 , Humanos , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Naftalenos/farmacologia , Ratos , Ratos Long-Evans , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Medicamentos Sintéticos/metabolismo
6.
Neuropharmacology ; 137: 133-140, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758385

RESUMO

Edible cannabis-infused products are an increasingly popular method of using cannabis in the United States. Yet, preclinical research to determine mechanisms underlying abuse of Δ9-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, has focused primarily on the effects of parenteral administration. The purpose of this study was to examine the rewarding and aversive effects of oral THC in a novel rodent voluntary ingestion model. Adult male and female Sprague Dawley rats were given access to sucrose-sweetened solutions during daily sessions. A range of THC concentrations, each paired with a unique flavor previously tested alone, was introduced into these solutions for four-session exposure periods and drinking volumes were measured. Injected (i.p.) THC doses were also paired with unique flavors to compare the effects of route of THC administration on drinking. Introduction of THC into sucrose solutions dose-dependently decreased drinking upon initial exposure, though drinking generally increased in subsequent sessions. By contrast, i.p. THC produced sustained dose-dependent decreases in drinking in rats of both sexes. Subsequent exposure to paired flavors in the absence of THC resulted in further decreases in drinking, suggesting route-specific aversion. Additional testing using saccharin-sweetened solutions in a two-bottle choice paradigm was also conducted, with THC producing sustained dose-dependent decreases in drinking after initial exposure in rats of both sexes. Though self-administration of ingested THC was not demonstrated, evidence of route-specific THC aversion was observed, which suggests that certain routes and/or rates of THC administration may mitigate some of its aversive effects.


Assuntos
Dronabinol/administração & dosagem , Dronabinol/efeitos adversos , Psicotrópicos/administração & dosagem , Psicotrópicos/efeitos adversos , Reforço Psicológico , Administração Oral , Animais , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Comportamento Alimentar , Feminino , Masculino , Distribuição Aleatória , Ratos Sprague-Dawley , Autoadministração , Volição
7.
Subst Abuse ; 11: 1178221817701739, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469427

RESUMO

Smoking is the most common route of administration for cannabis; however, vaping cannabis extracts and synthetic cannabinoids ("fake marijuana") in electronic cigarette devices has become increasingly popular. Yet, most animal models used to investigate biological mechanisms underlying cannabis use employ injection as the route of administration. This study evaluated a novel e-cigarette device that delivers aerosolized cannabinoids to mice. The effects of aerosolized and injected synthetic cannabinoids (CP 55,940, AB-CHMINACA, XLR-11, and JWH-018) in mice were compared in a battery of bioassays in which psychoactive cannabinoids produce characteristic effects. The most potent cannabinoids (CP 55,940 and AB-CHMINACA) produced the full cannabinoid profile (ie, hypothermia, hypolocomotion, and analgesia), regardless of the route of administration. In contrast, aerosolized JWH-018 and XLR-11 did not produce the full profile of cannabimimetic effects. Results of time course analysis for hypothermia showed that aerosol exposure to CP 55,940 and AB-CHMINACA produced faster onset of effects and shorter duration of action than injection. The ability to administer cannabinoids to rodents using the most common route of administration among humans provides a method for collecting preclinical data with enhanced translational relevance.

8.
Methods Rep RTI Press ; 20162016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28127591

RESUMO

Food products containing cannabis extract (edibles) have emerged as a popular and lucrative facet of the legalized market for both recreational and medicinal cannabis. The many formulations of cannabis extracts used in edibles present a unique regulatory challenge for policy makers. Though edibles are often considered a safe, discreet, and effective means of attaining the therapeutic and/or intoxicating effects of cannabis without exposure to the potentially harmful risks of cannabis smoking, little research has evaluated how ingestion differs from other methods of cannabis administration in terms of therapeutic efficacy, subjective effects, and safety. The most prominent difference between ingestion and inhalation of cannabis extracts is the delayed onset of drug effect with ingestion. Consumers often do not understand this aspect of edible use and may consume a greater than intended amount of drug before the drug has taken effect, often resulting in profoundly adverse effects. Written for the educated layperson and for policy makers, this paper explores the current state of research regarding edibles, highlighting the promises and challenges that edibles present to both users and policy makers, and describes the approaches that four states in which recreational cannabis use is legal have taken regarding regulating edibles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...