Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Earth Environ ; 5(1): 480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39239114

RESUMO

Although internal seiches are ubiquitous in large, deep lakes, little is known about the effect of higher vertical-mode seiches on deepwater dynamics. Here, by combining entire summer season current and temperature observations and 3D numerical modeling, we demonstrate that previously undetected vertical mode-two and mode-three Poincaré waves in 309-meter deep Lake Geneva (Switzerland/France) generate bottom-boundary layer currents up to 4 cm s-1. Poincaré wave amphidromic patterns revealed three strong cells excited simultaneously. Weak hypolimnetic stratification (N 2 ≈ 10-6 s -2), typical of deep lakes, significantly modified the wave structure by shifting the lower vertical node in the lake's center from ~75-meter depth (without stratification) to ~150-meter depth (with stratification). This shift induces shear in the middle of the hypolimnion and strengthens bottom currents, with important implications for hypolimnetic mixing and sediment-water exchange. Our findings demonstrate that classical concepts based on constant temperature layers cannot correctly characterize higher vertical-mode Poincaré seiches in deep lakes.

2.
Water Res ; 172: 115489, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32006772

RESUMO

Benzene is a toxic contaminant and can harm many aquatic species and cause serious damages to the river eco-system, if released to rivers. In 2012, a major spill accident occurred on the Huaihe River in Eastern China with 3 tons of benzene released to the river section 70 km upstream of a natural reserve. Two emergency measures were taken to minimize the impact of the accident on the natural reserve: 1) flow control by adjusting upstream sluices to delay the arrival of the contaminant plume at the reserve and 2) in-situ treatment using activated carbons to reduce the contaminant concentration. Here we develop a process-based mathematical model to analyze the monitoring data collected shortly after the accident, and explore not only how effective the adopted measures were over the incident but more importantly the mechanisms and critical conditions underlying the effectiveness of these measures. The model can be used as a tool for designing optimal management responses to similar spill accidents in regulated river systems, combining flow control and in-situ treatment.


Assuntos
Rios , Poluentes Químicos da Água , Benzeno , Carvão Vegetal , China , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA