Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(12): 5210-5219, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483184

RESUMO

Wildfires are a significant threat to human health, in part through degraded air quality. Prescribed burning can reduce wildfire severity but can also lead to an increase in air pollution. The complexities of fires and atmospheric processes lead to uncertainties when predicting the air quality impacts of fire and make it difficult to fully assess the costs and benefits of an expansion of prescribed fire. By modeling differences in emissions, surface conditions, and meteorology between wildfire and prescribed burns, we present a novel comparison of the air quality impacts of these fire types under specific scenarios. One wildfire and two prescribed burn scenarios were considered, with one prescribed burn scenario optimized for potential smoke exposure. We found that PM2.5 emissions were reduced by 52%, from 0.27 to 0.14 Tg, when fires burned under prescribed burn conditions, considerably reducing PM2.5 concentrations. Excess short-term mortality from PM2.5 exposure was 40 deaths for fires under wildfire conditions and 39 and 15 deaths for fires under the default and optimized prescribed burn scenarios, respectively. Our findings suggest prescribed burns, particularly when planned during conditions that minimize smoke exposure, could be a net benefit for the impacts of wildfires on air quality and health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Incêndios Florestais , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , California , Incêndios , Material Particulado/análise , Fumaça/análise , Incêndios Florestais/estatística & dados numéricos
2.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34753820

RESUMO

The COVID-19 global pandemic and associated government lockdowns dramatically altered human activity, providing a window into how changes in individual behavior, enacted en masse, impact atmospheric composition. The resulting reductions in anthropogenic activity represent an unprecedented event that yields a glimpse into a future where emissions to the atmosphere are reduced. Furthermore, the abrupt reduction in emissions during the lockdown periods led to clearly observable changes in atmospheric composition, which provide direct insight into feedbacks between the Earth system and human activity. While air pollutants and greenhouse gases share many common anthropogenic sources, there is a sharp difference in the response of their atmospheric concentrations to COVID-19 emissions changes, due in large part to their different lifetimes. Here, we discuss several key takeaways from modeling and observational studies. First, despite dramatic declines in mobility and associated vehicular emissions, the atmospheric growth rates of greenhouse gases were not slowed, in part due to decreased ocean uptake of CO2 and a likely increase in CH4 lifetime from reduced NO x emissions. Second, the response of O3 to decreased NO x emissions showed significant spatial and temporal variability, due to differing chemical regimes around the world. Finally, the overall response of atmospheric composition to emissions changes is heavily modulated by factors including carbon-cycle feedbacks to CH4 and CO2, background pollutant levels, the timing and location of emissions changes, and climate feedbacks on air quality, such as wildfires and the ozone climate penalty.


Assuntos
Poluição do Ar , Atmosfera/química , COVID-19/psicologia , Gases de Efeito Estufa , Modelos Teóricos , COVID-19/epidemiologia , Dióxido de Carbono , Mudança Climática , Humanos , Metano , Óxidos de Nitrogênio , Ozônio
3.
Bull Am Meteorol Soc ; 0: 1-94, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34446943

RESUMO

Wintertime episodes of high aerosol concentrations occur frequently in urban and agricultural basins and valleys worldwide. These episodes often arise following development of persistent cold-air pools (PCAPs) that limit mixing and modify chemistry. While field campaigns targeting either basin meteorology or wintertime pollution chemistry have been conducted, coupling between interconnected chemical and meteorological processes remains an insufficiently studied research area. Gaps in understanding the coupled chemical-meteorological interactions that drive high pollution events make identification of the most effective air-basin specific emission control strategies challenging. To address this, a September 2019 workshop occurred with the goal of planning a future research campaign to investigate air quality in Western U.S. basins. Approximately 120 people participated, representing 50 institutions and 5 countries. Workshop participants outlined the rationale and design for a comprehensive wintertime study that would couple atmospheric chemistry and boundary-layer and complex-terrain meteorology within western U.S. basins. Participants concluded the study should focus on two regions with contrasting aerosol chemistry: three populated valleys within Utah (Salt Lake, Utah, and Cache Valleys) and the San Joaquin Valley in California. This paper describes the scientific rationale for a campaign that will acquire chemical and meteorological datasets using airborne platforms with extensive range, coupled to surface-based measurements focusing on sampling within the near-surface boundary layer, and transport and mixing processes within this layer, with high vertical resolution at a number of representative sites. No prior wintertime basin-focused campaign has provided the breadth of observations necessary to characterize the meteorological-chemical linkages outlined here, nor to validate complex processes within coupled atmosphere-chemistry models.

4.
Environ Sci Technol ; 55(15): 10280-10290, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255503

RESUMO

Understanding the efficiency and variability of photochemical ozone (O3) production from western wildfire plumes is important to accurately estimate their influence on North American air quality. A set of photochemical measurements were made from the NOAA Twin Otter research aircraft as a part of the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment. We use a zero-dimensional (0-D) box model to investigate the chemistry driving O3 production in modeled plumes. Modeled afternoon plumes reached a maximum O3 mixing ratio of 140 ± 50 ppbv (average ± standard deviation) within 20 ± 10 min of emission compared to 76 ± 12 ppbv in 60 ± 30 min in evening plumes. Afternoon and evening maximum O3 isopleths indicate that plumes were near their peak in NOx efficiency. A radical budget describes the NOx volatile - organic compound (VOC) sensitivities of these plumes. Afternoon plumes displayed a rapid transition from VOC-sensitive to NOx-sensitive chemistry, driven by HOx (=OH + HO2) production from photolysis of nitrous acid (HONO) (48 ± 20% of primary HOx) and formaldehyde (HCHO) (26 ± 9%) emitted directly from the fire. Evening plumes exhibit a slower transition from peak NOx efficiency to VOC-sensitive O3 production caused by a reduction in photolysis rates and fire emissions. HOx production in evening plumes is controlled by HONO photolysis (53 ± 7%), HCHO photolysis (18 ± 9%), and alkene ozonolysis (17 ± 9%).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Ozônio/análise , Fotoquímica
5.
RSC Adv ; 11(19): 11714-11723, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35423635

RESUMO

Dabbing and vaping cannabis extracts have gained large popularity in the United States as alternatives to cannabis smoking, but diversity in both available products and consumption habits make it difficult to assess consumer exposure to psychoactive ingredients and potentially harmful components. This work studies the how relative ratios of the two primary components of cannabis extracts, Δ9-tetrahydrocannabinol (THC) and terpenes, affect dosage of these and exposure to harmful or potentially harmful components (HPHCs). THC contains a monoterpene moiety and has been previously shown to emit similar volatile degradation products to terpenes when vaporized. Herein, the major thermal degradation mechanisms for THC and ß-myrcene are elucidated via analysis of their aerosol gas phase products using automated thermal desorption-gas chromatography-mass spectrometry with the aid of isotopic labelling and chemical mechanism modelling. Four abundant products - isoprene, 2-methyl-2-butene, 3-methylcrotonaldehyde, and 3-methyl-1-butene - are shown to derive from a common radical intermediate for both THC and ß-myrcene and these products comprise 18-30% of the aerosol gas phase. The relative levels of these four products are highly correlated with applied power to the e-cigarette, which indicates formation of these products is temperature dependent. Vaping THC-ß-myrcene mixtures with increasing % mass of ß-myrcene is correlated with less degradation of the starting material and a product distribution suggestive of a lower aerosolization temperature. By contrast, dabbing THC-ß-myrcene mixtures with increasing % mass of ß-myrcene is associated with higher levels of HPHCs, and isotopic labelling showed this is due to increased reactivity of ß-myrcene relative to THC.

6.
Phys Chem Chem Phys ; 22(45): 26265-26277, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33174561

RESUMO

The basicity constant, or pKb, is an intrinsic physical property of bases that gives a measure of its proton affinity in macroscopic environments. While the pKb is typically defined in reference to the bulk aqueous phase, several studies have suggested that this value can differ significantly at the air-water interface (which can have significant ramifications for particle surface chemistry and aerosol growth modeling). To provide mechanistic insight into surface proton affinity, we carried out ab initio metadynamics calculations to (1) explore the free-energy profile of dimethylamine and (2) provide reasonable estimates of the pKb value in different solvent environments. We find that the free-energy profiles obtained with our metadynamics calculations show a dramatic variation, with interfacial aqueous dimethylamine pKb values being significantly lower than in the bulk aqueous environment. Furthermore, our metadynamics calculations indicate that these variations are due to reduced hydrogen bonding at the air-water surface. Taken together, our quantum mechanical metadynamics calculations show that the reactivity of dimethylamine is surprisingly complex, leading to pKb variations that critically depend on the different atomic interactions occurring at the microscopic molecular level.

7.
Sci Total Environ ; 737: 140333, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783873

RESUMO

While the effects of fuel composition on primary vehicle emissions have been well studied, less is known about the effects on secondary aerosol formation and composition. The propensity of light-duty gasoline engines to form secondary aerosol and contribute to regional air quality burdens are of scientific interest. This study assessed secondary aerosol formation and composition due to photochemical aging of exhaust emissions from a light-duty vehicle equipped with gasoline direct injection (GDI) engine. The vehicle was operated on eight fuels with varying ethanol and aromatic levels. Testing was performed over the LA92 cycle using a chassis dynamometer. The aging studies were performed using a mobile environmental chamber. Diluted exhaust emissions were introduced to the mobile chamber over the course of the LA92 cycle and subsequently photochemically reacted. It was found that secondary aerosol mass exceeded the primary particulate matter (PM) emissions. Secondary aerosol was primarily composed of ammonium nitrate due to the elevated tailpipe ammonia emissions. The high aromatic fuels produced greater total carbonaceous aerosol and secondary organic aerosol (SOA) compared to the low aromatic fuels. A clear influence of ethanol for the high aromatic fuels on SOA formation was observed, with greater SOA formation for the fuels with higher ethanol contents. Our results suggest that more SOA formation is expected from current GDI vehicles when operated with gasoline fuels rich with heavier aromatics and blended with higher ethanol levels.

8.
Environ Sci Technol ; 53(16): 9418-9428, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31318536

RESUMO

Wildland fires in the western United States are projected to increase in frequency, duration, and size. Characterized by widespread and diverse conifer forests, burning within this region may lead to significant terpenoid emissions. Terpenoids constitute a major class of highly reactive secondary organic aerosol (SOA) precursors, with significant structure-dependent variability in reactivity and SOA-formation potential. In this study, highly speciated measurements of terpenoids emitted from laboratory and prescribed fires were achieved using two-dimensional gas chromatography. Nearly 100 terpenoids were measured in smoke samples from 71 fires, with high variability in the dominant compounds. Terpenoid emissions were dependent on plant species and tissues. Canopy/needle-derived emissions dominated in the laboratory fires, whereas woody-tissue-derived emissions dominated in the prescribed fires. Such differences likely have implications for terpenoid emissions from high vs low intensity fires and suggest that canopy-dominant laboratory fires may not accurately represent terpenoid emissions from prescribed fires or wildland fires that burn with low intensity. Predicted SOA formation was sensitive to the diversity of emitted terpenoids when compared to assuming a single terpene surrogate. Given the demonstrated linkages between fuel type, fire terpenoid emissions, and the subsequent implications for plume chemistry, speciated measurements of terpenoids in smoke derived from diverse ecosystems and fire regimes may improve air quality predictions downwind of wildland fires.


Assuntos
Poluentes Atmosféricos , Incêndios , Traqueófitas , Incêndios Florestais , Ecossistema , Florestas , Terpenos
9.
J Phys Chem A ; 123(26): 5640-5648, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31150230

RESUMO

The size-resolved composition of nanoparticles formed and grown through acid-base reactive uptake has been studied in the laboratory by reacting gas-phase nitric acid (HNO3) and dimethylamine (DMA) in a flow tube under dry (<5% RH) and humid (∼55% RH) conditions. Size-resolved nanoparticle composition was measured by a thermal desorption chemical ionization mass spectrometer over the diameter range of 9-30 nm. The nanoparticle geometric mean diameter grew in the presence of water compared to dry conditions. Acid/base ratios of HNO3-DMA particles at all measured sizes did not strongly deviate from neutral (1:1) in either RH condition, which contrasts with prior laboratory studies of nanoparticles made from sulfuric acid (H2SO4) and base. Theoretical methods were used to investigate the underlying chemical processes that explain observed differences in the compositions of HNO3-DMA and H2SO4-DMA particles. Calculations of HNO3-DMA cluster stability indicated that a 1:1 acid/base ratio has >107 smaller evaporation rates than any other acid/base ratio in this system, and measured nanoparticle composition confirm this to be the most stable pathway for growth up to 30 nm particles. This study demonstrates that nanoparticle formation and growth via acid-base reactive uptake of HNO3 and DMA follow the thermodynamic theory, likely because of both components' volatility.

10.
Environ Sci Technol ; 53(5): 2529-2538, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698424

RESUMO

Biomass burning (BB) is a large source of reactive compounds in the atmosphere. While the daytime photochemistry of BB emissions has been studied in some detail, there has been little focus on nighttime reactions despite the potential for substantial oxidative and heterogeneous chemistry. Here, we present the first analysis of nighttime aircraft intercepts of agricultural BB plumes using observations from the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign. We use these observations in conjunction with detailed chemical box modeling to investigate the formation and fate of oxidants (NO3, N2O5, O3, and OH) and BB volatile organic compounds (BBVOCs), using emissions representative of agricultural burns (rice straw) and western wildfires (ponderosa pine). Field observations suggest NO3 production was approximately 1 ppbv hr-1, while NO3 and N2O5 were at or below 3 pptv, indicating rapid NO3/N2O5 reactivity. Model analysis shows that >99% of NO3/N2O5 loss is due to BBVOC + NO3 reactions rather than aerosol uptake of N2O5. Nighttime BBVOC oxidation for rice straw and ponderosa pine fires is dominated by NO3 (72, 53%, respectively) but O3 oxidation is significant (25, 43%), leading to roughly 55% overnight depletion of the most reactive BBVOCs and NO2.


Assuntos
Atmosfera , Incêndios , Aerossóis , Aeronaves , Biomassa
11.
Bioresour Technol ; 267: 408-415, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30032054

RESUMO

Increased demand for water, energy and food requires new ways to produce fertilizers, fuels and reusable water. Recovery of resources from wastes could lead to an additional source of energy and nutrients, and also reduce the waste to be disposed. In this work, we used hydrothermal liquefaction to produce a biocrude oil product, followed by membrane distillation of the aqueous effluents to concentrate a nutrient-rich stream that can be used as fertilizer. The motivation for this work is that residual heat from the hydrothermal liquefaction process could be utilized to drive the membrane distillation process, which would improve the efficiency and reduce the cost of the distillation process. The membrane distillation system was demonstrated to be able to recover 75% of the water. The membrane distillation retentate had very high ammonium and phosphate concentrations, making it suitable as a fertilizer. Membrane permeate contained high concentrations of volatile organics.


Assuntos
Indústria de Laticínios , Fertilizantes , Alimentos , Eliminação de Resíduos , Compostos de Amônio , Destilação , Fazendas , Águas Residuárias
12.
ACS Omega ; 3(1): 30-36, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29399647

RESUMO

Electronic cigarettes enabling enhanced airflow have grown in popularity in recent years. The objective of this study is to show that flow rates modulate the levels of specific aerosol toxicants produced in electronic cigarettes. Flow rates used in various laboratory investigations involving e-cigarettes have varied widely to date, and can thus promote interlaboratory variability in aerosol product profiles. The thermal decomposition of hydroxyacetone and glycolaldehyde is less favorable at lower temperatures, supporting the observations of these products at higher flow rates/lower heating coil temperatures. Higher temperatures promote the formation of acetaldehyde from hydroxyacetone and formaldehyde from both hydroxyacetone and glycolaldehyde. A separate finding is that greater airflow can also expose users to concerning levels of e-liquid solvents. Under the modest conditions studied, propylene glycol aerosol levels are found at above the acceptable inhalation levels defined by NASA, and in range of the generally recognized as safe levels for daily ingestion.

13.
J Phys Chem Lett ; 8(7): 1503-1511, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28281761

RESUMO

Secondary organic aerosol (SOA) formation proceeds by bimolecular gas-phase oxidation reactions generating species that are sufficiently low in volatility to partition into the condensed phase. Advances in instrumentation have revealed that atmospheric SOA is less volatile and more oxidized than can be explained solely by these well-studied gas-phase oxidation pathways, supporting the role of additional chemical processes. These processes-autoxidation, accretion, and organic salt formation-can lead to exceedingly low-volatility species that recently have been identified in laboratory and field studies. Despite these new insights, the identities of the condensing species at the molecular level and the relative importance of the various formation processes remain poorly constrained. The thermodynamics of autoxidation, accretion, and organic salt formation can be described by equilibrium partitioning theory; a framework for which is presented here. This framework will facilitate the inclusion of such processes in model representations of SOA formation.

15.
Environ Sci Technol ; 48(20): 11944-53, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25229208

RESUMO

The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, ß-pinene, Δ-3-carene, limonene, sabinene, and ß-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m(3) indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38-65% for Δ-3-carene and 86% for ß-caryophyllene at mass loading of 10 µg m(-3), suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location's mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.


Assuntos
Aerossóis/química , Nitratos/química , Compostos Orgânicos Voláteis/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/química , Cicloexenos/química , Cinética , Limoneno , Monoterpenos/química , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Terpenos/química
16.
Environ Sci Technol ; 48(16): 9053-60, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25083820

RESUMO

To quantify and minimize the influence of gas/particle (G/P) partitioning on receptor-based source apportionment using particle-phase semivolatile organic compound (SVOC) data, positive matrix factorization (PMF) coupled with a bootstrap technique was applied to three data sets mainly composed of "measured-total" (measured particle- + gas-phase), "particle-only" (measured particle-phase) and "predicted-total" (measured particle-phase + predicted gas-phase) SVOCs to apportion carbonaceous aerosols. Particle- (PM2.5) and gas-phase SVOCs were collected using quartz fiber filters followed by PUF/XAD-4/PUF adsorbents and measured using gas chromatography-mass spectrometry (GC-MS). Concentrations of gas-phase SVOCs were also predicted from their particle-phase concentrations using absorptive partitioning theory. Five factors were resolved for each data set, and the factor profiles were generally consistent across the three PMF solutions. Using a previous source apportionment study at the same receptor site, those five factors were linked to summertime biogenic emissions (odd n-alkane factor), unburned fossil fuels (light SVOC factor), road dust and/or cooking (n-alkane factor), motor vehicle emissions (PAH factor), and lubricating oil combustion (sterane factor). The "measured-total" solution was least influenced by G/P partitioning and used as reference. Two out of the five factors (odd n-alkane and PAH factors) exhibited consistent contributions for "particle-only" vs "measured-total" and "predicted-total" vs "measured-total" solutions. Factor contributions of light SVOC and n-alkane factors were more consistent for "predicted-total" vs "measured-total" than "particle-only" vs "measured-total" solutions. The remaining factor (sterane factor) underestimated the contribution by around 50% from both "particle-only" and "predicted-total" solutions. The results of this study confirm that when measured gas-phase SVOCs are not available, "predicted-total" SVOCs should be used to decrease the influence of G/P partitioning on receptor-based source apportionment.


Assuntos
Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Aerossóis , Alcanos/análise , Culinária , Poeira , Monitoramento Ambiental , Combustíveis Fósseis , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos
17.
Environ Sci Technol ; 48(5): 2835-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24517510

RESUMO

In this study, a medium volume sampler incorporating quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD/PUF sandwich (PXP) was used to collect 2-methyltetrols (isoprene tracer) and levoglucosan (biomass burning tracer) in gaseous and particle (PM2.5) phases. The measured gas/particle (G/P) partitioning coefficients (Kp,OMm) of 2-methyltetrols and levoglucosan were calculated and compared to their predicted G/P partitioning coefficients (Kp,OMt) based on an absorptive partitioning theory. The breakthrough experiments showed that gas-phase 2-methyltetrols and levoglucosan could be collected using the PXP or PUF adsorbent alone, with low breakthrough; however, the recoveries of levoglucosan in PXP samples were lower than 70% (average of 51.9­63.3%). The concentration ratios of 2-methyltetrols and levoglucosan in the gas phase to those in the particle phase were often close to or higher than unity in summer, indicating that these polar species are semi-volatile and their G/P partitioning should be considered when applying particle-phase data for source apportionment. The Kp,OMm values of 2-methyltetrols had small variability in summer Denver, which was ascribed to large variations in concentrations of particulate organic matter (5.14 ± 3.29 µg m­3) and small changes in ambient temperature (21.8 ± 4.05 °C). The regression between log Kp,OMm and log Kp,OMt suggested that the absorptive G/P partitioning theory could reasonably predict the measured G/P partitioning of levoglucosan in ambient samples.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Glucose/análogos & derivados , Poluentes Atmosféricos/química , Cidades , Colorado , Monitoramento Ambiental/instrumentação , Filtração , Glucose/análise , Glucose/química , Material Particulado/análise , Material Particulado/química , Poliuretanos/química , Quartzo , Estações do Ano , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
18.
Environ Sci Technol ; 46(17): 9777-84, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22852528

RESUMO

The expanding production of bioenergy crops may impact regional air quality through the production of volatile organic compounds such as isoprene. To investigate the effects of isoprene-emitting crops on air quality, specifically ozone (O(3)) and secondary organic aerosol (SOA) formation, we performed a series of model runs using the Weather Research and Forecasting model with Chemistry (WRF/Chem) coupled with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) simulating a proposed cropland conversion to the giant cane Arundo donax for biomass production. Cultivation of A. donax in the relatively clean air of northeastern Oregon resulted in an average increase in 8 h O(3) levels of 0.52 ppb, while SOA was largely unaffected (<+0.01 µg m(-3)). Conversions in U.S. regions with reduced air quality (eastern Texas and northern Illinois) resulted in average 8 h O(3) increases of 2.46 and 3.97 ppb, respectively, with daily increases up to 15 ppb in the Illinois case, and daytime SOA increases up to 0.57 µg m(-3). While cultivation of isoprene-emitting bioenergy crops may be appropriate at some scales and in some regions, other areas may experience increased O(3) and SOA, highlighting the need to consider isoprene emissions when evaluating potential regional impacts of bioenergy crop production.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Butadienos/metabolismo , Hemiterpenos/metabolismo , Ozônio/análise , Pentanos/metabolismo , Poaceae/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/metabolismo , Biomassa , Monitoramento Ambiental , Illinois , Modelos Biológicos , Oregon , Poaceae/metabolismo , Texas
19.
Proc Natl Acad Sci U S A ; 107(15): 6634-9, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20080626

RESUMO

We present laboratory studies and field observations that explore the role of aminium salt formation in atmospheric nanoparticle growth. These measurements were performed using the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) and Ultrafine Hygroscopicity Tandem Differential Mobility Analyzers. Laboratory measurements of alkylammonium-carboxylate salt nanoparticles show that these particles exhibit lower volatilities and only slightly lower hygroscopicities than ammonium sulfate nanoparticles. TDCIMS measurements of these aminium salts showed that the protonated amines underwent minimal decomposition during analysis, with detection sensitivities comparable to those of organic and inorganic deprotonated acids. TDCIMS observations made of a new particle formation event in an urban site in Tecamac, Mexico, clearly indicate the presence of protonated amines in 8-10 nm diameter particles accounting for about 47% of detected positive ions; 13 nm particles were hygroscopic with an average 90% RH growth factor of 1.42. Observations of a new particle formation event in a remote forested site in Hyytiälä, Finland, show the presence of aminium ions with deprotonated organic acids; 23% of the detected positive ions during this event are attributed to aminium salts while 10 nm particles had an average 90% RH growth factor of 1.27. Similar TDCIMS observations during events in Atlanta and in the vicinity of Boulder, Colorado, show that aminium salts accounted for 10-35% of detected positive ions. We conclude that aminium salts contribute significantly to nanoparticle growth and must be accounted for in models to accurately predict the impact of new particle formation on climate.


Assuntos
Aminas/química , Atmosfera , Clima , Monitoramento Ambiental/métodos , Sais/química , Poluentes Atmosféricos/análise , Poluição do Ar , Finlândia , Íons , Espectrometria de Massas/métodos , México , Nanopartículas/química , Tamanho da Partícula , Material Particulado
20.
Magn Reson Chem ; 45(2): 167-70, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17154330

RESUMO

The submicron liquid droplets constituting the particulate matter of mainstream tobacco smoke (PMMTS) are viscous and of a composition that is complex and poorly understood. PMMTS is often approximately 80% w/w 'tar' where 'tar'=total PMMTS- (nicotine+water). Many of the chemical agents in MTS responsible for smoking-related cancers are found at least partially in the PMMTS portion of MTS. The properties of PMMTS vary with brand and with puffing patterns. The chemical forms and total levels of nicotine, the identities/levels of other compositionally dominant compounds, and the identities/levels of carcinogens are of interest. Most studies of the composition of PMMTS have involved extraction then chromatography. Such methods allow the determination of low-level constituents, but alter the samples such that direct information regarding chemical conditions within the PMMTS cannot be obtained. Here, we utilize nuclear magnetic resonance spectroscopy (NMR) to examine native PMMTS in conventional cigarettes, including measurements of the brand-dependent fraction of PMMTS nicotine that is in the free-base form (increasing this fraction in inhaled tobacco smoke affects the rates of the processes governing nicotine deposition in the respiratory tract, and so has implications for smoking behavior and addiction). We also demonstrate the use of NMR for characterizing the composition of PMMTS (including the levels of selected cigarette additives) when the cosolvent DMSO-d6 is added to improve spectral resolution. The native and solvent-assisted results open the door to a range of future studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...