Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-480751

RESUMO

The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays striking immune escape potential. Many of its mutations localize to the spike protein ACE2 receptor-binding domain, annulling the neutralizing activity of most therapeutic monoclonal antibodies. Here we describe a receptor-blocking human monoclonal antibody, 87G7, that retains ultrapotent neutralization against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta and Omicron (BA.1/BA.2) Variants-of-Concern (VOCs). Structural analysis reveals that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protects mice and/or hamsters against challenge with all current SARS-CoV-2 VOCs. Our findings may aid the development of sustainable antibody-based strategies against COVID-19 that are more resilient to SARS-CoV-2 antigenic diversity. One sentence summaryA human monoclonal antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-476898

RESUMO

In late 2021, the highly mutated SARS-CoV-2 Omicron variant emerged, raising concerns about its potential extensive immune evasion, increased transmissibility and pathogenicity. Here, we used organoids of the human airways and alveoli to investigate Omicrons fitness and replicative potential in comparison with earlier SARS-CoV-2 variants. We report that Omicron replicates more rapidly in the airways and has an increased fitness compared to the early 614G variant and Delta. In contrast, Omicron did not replicate productively in human alveolar type 2 cells. Mechanistically, we show that Omicron does not efficiently use TMPRSS2 for entry or spread through cell-cell fusion. Altogether, our data show that Omicron has an altered tropism and protease usage, potentially explaining its higher transmissibility and decreased pathogenicity.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268416

RESUMO

The severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2) Omicron variant (B.1.1.529) is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T-cell responses to SARS-CoV-2 D614G (wildtype, WT), and the B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants of concern (VOC) in a cohort of 60 health care workers (HCW) after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273 or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which significantly decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays with authentic virus showed consistent cross-neutralization of the Beta and Delta variants in study participants, but Omicron-specific responses were significantly lower or absent (up to a 34-fold decrease compared to D614G). Notably, BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV.2 priming partially restored neutralization of the Omicron variant, but responses were still up to-17-fold decreased compared to D614G. CD4+ T-cell responses were detected up to 6 months after all vaccination regimens; S-specific T-cell responses were highest after mRNA-1273 vaccination. No significant differences were detected between D614G- and variant-specific T-cell responses, including Omicron, indicating minimal escape at the T-cell level. This study shows that vaccinated individuals retain T-cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations may be needed to further restore Omicron cross-neutralization by antibodies.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-441080

RESUMO

A new phase of the COVID-19 pandemic has started as several SARS-CoV-2 variants are rapidly emerging globally, raising concerns for increased transmissibility. As animal models and traditional in vitro systems may fail to model key aspects of the SARS-CoV-2 replication cycle, representative in vitro systems to assess variants phenotypically are urgently needed. We found that the British variant (clade B.1.1.7), compared to an ancestral SARS-CoV-2 clade B virus, produced higher levels of infectious virus late in infection and had a higher replicative fitness in human airway, alveolar and intestinal organoid models. Our findings unveil human organoids as powerful tools to phenotype viral variants and suggest extended shedding as a correlate of fitness for SARS-CoV-2. One-Sentence SummaryBritish SARS-CoV-2 variant (clade B.1.1.7) infects organoids for extended time and has a higher fitness in vitro.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-444952

RESUMO

Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids (IOs) are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252267

RESUMO

Assays to measure SARS-CoV-2-specific neutralizing antibodies are important to monitor seroprevalence, to study asymptomatic infections and to reveal (intermediate) hosts. A recently developed assay, the surrogate virus-neutralization test (sVNT) is a quick and commercially available alternative to the "gold standard" virus neutralization assay using authentic virus, and does not require processing at BSL-3 level. The assay relies on the inhibition of binding of the receptor binding domain (RBD) on the spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) by antibodies present in sera. As the sVNT does not require species- or isotype-specific conjugates, it can be similarly used for antibody detection in human and animal sera. In this study, we used 298 sera from PCR-confirmed COVID-19 patients and 151 sera from patients confirmed with other coronavirus or other (respiratory) infections, to evaluate the performance of the sVNT. To analyze the use of the assay in a One Health setting, we studied the presence of RBD-binding antibodies in 154 sera from nine animal species (cynomolgus and rhesus macaques, ferrets, rabbits, hamsters, cats, cattle, mink and dromedary camels). The sVNT showed a moderate to high sensitivity and a high specificity using sera from confirmed COVID-19 patients (91.3% and 100%, respectively) and animal sera (93.9% and 100%), however it lacked sensitivity to detect low titers. Significant correlations were found between the sVNT outcomes and PRNT50 and the Wantai total Ig and IgM ELISAs. While species-specific validation will be essential, our results show that the sVNT holds promise in detecting RBD-binding antibodies in multiple species.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256520

RESUMO

The mRNA-based BNT162b2 vaccine from Pfizer/BioNTech was the first registered COVID-19 vaccine and has been shown to be up to 95% effective in preventing SARS-CoV-2 infections. Little is known about the broad effects of the new class of mRNA vaccines, especially whether they have combined effects on innate and adaptive immune responses. Here we confirmed that BNT162b2 vaccination of healthy individuals induced effective humoral and cellular immunity against several SARS-CoV-2 variants. Interestingly, however, the BNT162b2 vaccine also modulated the production of inflammatory cytokines by innate immune cells upon stimulation with both specific (SARS-CoV-2) and non-specific (viral, fungal and bacterial) stimuli. The response of innate immune cells to TLR4 and TLR7/8 ligands was lower after BNT162b2 vaccination, while fungi-induced cytokine responses were stronger. In conclusion, the mRNA BNT162b2 vaccine induces complex functional reprogramming of innate immune responses, which should be considered in the development and use of this new class of vaccines.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-427802

RESUMO

Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein that facilitates serine protease-mediated entry into human airway cells. We report that propagating SARS-CoV-2 on the human airway cell line Calu-3 - that expresses serine proteases - prevents MBCS mutations. Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-361154

RESUMO

Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike protein. We have designed a dimeric lipopeptide fusion inhibitor that blocks this critical first step of infection for emerging coronaviruses and document that it completely prevents SARS-CoV-2 infection in ferrets. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour co-housing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and non-toxic and thus readily translate into a safe and effective intranasal prophylactic approach to reduce transmission of SARS-CoV-2. One-sentence summaryA dimeric form of a SARS-CoV-2-derived lipopeptide is a potent inhibitor of fusion and infection in vitro and transmission in vivo.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-369413

RESUMO

The post-acute phase of SARS-CoV-2 infection was investigated in rhesus macaques (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). During the acute phase of infection, SARS-CoV-2 was shed via nose and throat, and viral RNA was occasionally detected in feces. This phase coincided with a transient change in systemic immune activation. Even after the alleged resolution of the infection, as suggested by the absence of viral RNA in nasal and tracheal swabs, computed tomography (CT) and positron emission tomography (PET)-CT were able to reveal pulmonary lesions and activated tracheobronchial lymph nodes in all animals. Post-mortem histological examination of the lung tissue revealed mostly marginal or resolving minimal lesions that were indicative of SARS-CoV-2 infection. Evidence for SARS-CoV-2-induced histopathology was also found in extrapulmonary tissue samples, like conjunctiva, cervical and mesenteric lymph nodes. However, 5-6 weeks after SARS-CoV-2 exposure, upon necropsy, viral RNA was still detectable in a wide range of tissue samples in 50% of the macaques and included amongst others the heart, the respiratory tract and surrounding lymph nodes, salivary gland, and conjunctiva. Subgenomic messenger RNA was detected in the lungs and tracheobronchial lymph nodes, indicative of ongoing virus replication during the post-acute phase. These results could be relevant for understanding the long-term consequences of COVID-19 in humans. Author summaryMore than a year after the start of the pandemic, the long-term consequences of SARS-CoV-2 infection start to surface. The variety of clinical manifestations associated with post-acute COVID-19 suggests the involvement of multiple biological mechanisms. In this study, we show that rhesus and cynomolgus macaques shed virus from their respiratory tract, generate virus-specific humoral immune responses, and show signs of SARS-CoV-2-induced lung pathology. PET-CT revealed that both species showed ongoing mild to moderate pulmonary disease, even after the virus was no longer detectable in nasal and tracheal swabs. Five to six weeks after infection, necropsy confirmed minimal to mild histopathological manifestations in various tissues, like the lungs, heart, lymph nodes, and conjunctiva. We detected Viral RNA in the heart, respiratory tract, and tracheobronchial lymph nodes, and subgenomic messenger RNA in the lungs and surrounding lymph nodes, indicative of ongoing virus replication. We show widespread tissue dissemination of SARS-CoV-2 in infected macaques and the presence of replicating virus in lungs and surrounding lymph nodes after alleged convalescence of infection. This finding is intriguing in the light of long-COVID disease symptoms seen in humans as it has been hypothesized that persistent infection may contribute to this phenomenon.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20210070

RESUMO

Severe acquired respiratory syndrome coronavirus-2 (SARS-CoV-2) is the cause of coronavirus disease (COVID-19). In severe COVID-19 cases, higher antibody titers against seasonal coronaviruses have been observed than in mild cases. To investigate antibody cross-reactivity as potential explanation for severe disease, we determined the kinetics, breadth, magnitude and level of cross-reactivity of IgG against SARS-CoV-2 and seasonal CoV nucleocapsid and spike from 17 severe COVID-19 cases at the clonal level. Although patients mounted a mostly type-specific SARS-CoV-2 response, B-cell clones directed against seasonal CoV dominated and strongly increased over time. Seasonal CoV IgG responses that did not neutralize SARS-CoV-2 were boosted well beyond detectable cross-reactivity, particularly for HCoV-OC43 spike. These findings support a back-boost of poorly protective coronavirus-specific antibodies in severe COVID-19 patients that may negatively impact de novo SARS-CoV-2 immunity, reminiscent of original antigenic sin.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-286120

RESUMO

After the SARS-CoV outbreak in 2003, a second zoonotic coronavirus named SARS-CoV-2, emerged late 2019 in China and rapidly caused the COVID-19 pandemic leading to a public health crisis of an unprecedented scale. Despite the fact that SARS-CoV-2 uses the same receptor as SARS-CoV, transmission and pathogenesis of both viruses seem to be quite distinct. A remarkable feature of the SARS-CoV-2 spike is the presence of a multibasic cleavage site, which is absent in the SARS-CoV spike. The viral spike protein not only attaches to the entry receptor, but also mediates fusion after cleavage by host proteases. Here, we report that the SARS-CoV-2 spike multibasic cleavage site increases infectivity on differentiated organoid-derived human airway cells. Compared with SARS-CoV, SARS-CoV-2 entered faster into the lung cell line Calu-3, and more frequently formed syncytial cells in differentiated organoid-derived human airway cells. Moreover, the multibasic cleavage site increased entry speed and plasma membrane serine protease usage relative to endosomal entry using cathepsins. Blocking serine protease activity using the clinically approved drug camostat mesylate effectively inhibited SARS-CoV-2 entry and replication in differentiated organoid-derived human airway cells. Our findings provide novel information on how SARS-CoV-2 enters relevant airway cells and highlight serine proteases as an attractive antiviral target. Significance StatementHighly pathogenic coronaviruses have spilled from animals to humans three times in the past two decades. Late 2019, SARS-CoV-2 emerged in China and was declared a pandemic by March 2020. The other two highly pathogenic coronaviruses, SARS-CoV and MERS-CoV, emerged in 2002 and 2012, respectively, but did not attain sustained human-to-human transmission. Given the high diversity of coronaviruses in animals, urbanization and increased air travel, future coronavirus pandemics are likely to occur intermittently. Identifying which factors determine pandemic potential and pathogenicity are therefore of key importance to global health. Additionally, there is an urgent need to rapidly translate fundamental knowledge to the clinic, a process that is expedited through the use of relevant cell culture systems.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-263988

RESUMO

Transmission of severe acute respiratory coronavirus-2 (SARS-CoV-2) between livestock and humans is a potential public health concern. We demonstrate the susceptibility of rabbits to SARS-CoV-2, which excrete infectious virus from the nose and throat upon experimental inoculation. Therefore, investigations on the presence of SARS-CoV-2 in farmed rabbits should be considered.

14.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-264630

RESUMO

Effective clinical intervention strategies for COVID-19 are urgently needed. Although several clinical trials have evaluated the use of convalescent plasma containing virus-neutralizing antibodies, the effectiveness has not been proven. We show that hamsters treated with a high dose of human convalescent plasma or a monoclonal antibody were protected against weight loss showing reduced pneumonia and pulmonary virus replication compared to control animals. However, a ten-fold lower dose of convalescent plasma showed no protective effect. Thus, variable and relatively low levels of virus neutralizing antibodies in convalescent plasma may limit their use for effective antiviral therapy, favouring concentrated, purified (monoclonal) antibodies.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20177857

RESUMO

Understanding the coronavirus (CoV) antibody landscape in relation to disease and susceptibility is critical for modelling of steps in the next phase during the current covid-19 pandemic. In March 2020, during the first month of the epidemic in The Netherlands, we performed cross sectional studies at two time points amongst patients of the Erasmus Medical Centre in Rotterdam, to assess the presence of antibodies against seasonal human coronaviruses (OC43, 229E, NL63, HKU1), emerging zoonotic coronaviruses (SARS, MERS) and SARS-CoV-2 in nine different age groups. We observed minimal SARS-CoV-2 reactivity early March (0.7% of sera), increasing to 3.0%, four weeks later, suggesting probably undetected cases during this early phase of the epidemic. Antibody responses were mostly coronavirus species specific at young age, but possible cross-reactivity between human seasonal CoVs was observed with increasing age.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20139857

RESUMO

Structured abstract for full paperO_ST_ABSBackgroundC_ST_ABSAfter recovery from COVID-19, most patients have anti-SARS-CoV-2 neutralizing antibodies. Their convalescent plasma could be an inexpensive and widely available treatment for COVID-19. MethodsThe Convalescent-plasma-for-COVID (ConCOVID) study was a randomized trial comparing convalescent plasma with standard of care therapy in patients hospitalized for COVID-19 in the Netherlands. Patients were randomized 1:1 and received 300ml of plasma with anti-SARS-CoV-2 neutralizing antibody titers of at least 1:80. The primary endpoint was day-60 mortality and key secondary endpoints were hospital stay and WHO 8-point disease severity scale improvement on day 15. ResultsThe trial was halted prematurely after 86 patients were enrolled. Although symptomatic for only 10 days (IQR 6-15) at the time of inclusion, 53 of 66 patients tested had anti-SARS-CoV-2 antibodies at baseline. A SARS-CoV-2 plaque reduction neutralization test showed neutralizing antibodies in 44 of the 56 (79%) patients tested with median titers comparable to the 115 donors (1:160 vs 1:160, p=0.40). These observations caused concerns about the potential benefit of convalescent plasma in the study population and after discussion with the data safety monitoring board, the study was discontinued. No difference in mortality (p=0.95), hospital stay (p=0.68) or day-15 disease severity (p=0.58) was observed between plasma treated patients and patients on standard of care. ConclusionMost COVID-19 patients already have high neutralizing antibody titers at hospital admission. Screening for antibodies and prioritizing convalescent plasma to risk groups with recent symptom onset will be key to identify patients that may benefit from convalescent plasma. Clinicaltrials.gov: NCT04342182

17.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20125310

RESUMO

BackgroundLong-term shedding of viral RNA in COVID-19 prevents timely discharge from the hospital or de-escalation of infection prevention and control practices. Key questions are the duration and determinants of infectious virus shedding. We assessed these questions using virus cultures of respiratory tract samples from hospitalized COVID-19 patients as a proxy for infectious virus shedding. MethodsClinical and virological data were obtained from 129 hospitalized COVID-19 patients (89 intensive care, 40 medium care). Generalized estimating equations were used to identify if viral RNA load, detection of viral subgenomic RNA, serum neutralizing antibody response, duration of symptoms, or immunocompromised status were predictive for a positive virus culture. FindingsInfectious virus shedding was detected in 23 of the 129 patients (17,8%). The median duration of shedding was 8 days post onset of symptoms (IQR 5 - 11) and the probability of detecting infectious virus dropped below 5% after 15,2 days post onset of symptoms (95% confidence interval (CI) 13,4 - 17,2). Multivariate analyses identified viral loads above 7 log10 RNA copies/mL (odds ratio [OR]; CI 14,7 (3,57-58,1; p<0,001) as independently associated with isolation of infectious SARS-CoV-2 from the respiratory tract. A serum neutralizing antibody titre of at least 1:20 (OR of 0,01 (CI 0,003-0,08; p<0,001) was independently associated with non-infectious SARS-CoV-2. InterpretationInfection prevention and control guidelines should take into account that patients with severe or critical COVID-19 may shed infectious virus for longer periods of time compared to what has been reported for in patients with mild COVID-19. Infectious virus shedding drops to undetectable levels below a viral RNA load threshold and once serum neutralizing antibodies are present, which warrants the use of quantitative viral RNA load assays and serological assays in test-based strategies to discontinue or de-escalate infection prevention and control precautions. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWe searched PubMed, bioRxiv, and medRxiv for articles that reported on shedding of infectious virus in COVID-19 patients using the search terms ("coronavirus" OR "SARS" OR "SARS-CoV-2" OR "COVID-19") AND ("shedding" OR "infectivity" OR "infectious" OR "virus culture") with no language or time restrictions. A detailed study on nine patients with mild COVID-19 reported that infectious virus could not be isolated after more than eight days of symptoms. The probability of isolating infectious virus was less than 5% when viral loads dropped below 6,51 Log10 RNA copies/mL. Similar results were obtained with a larger diagnostic sample set, but that study did not report on clinical parameters such as disease severity. Finally there is a report of a single patient shedding infectious virus up to 18 days after onset of symptoms. No published works were found on the shedding of infectious virus in patients with severe or critical COVID-19, and no published works were found on factors independently associated with shedding of infectious virus. Added value of this studyWe assessed the duration and determinants of infectious virus shedding in 129 patients with severe or critical COVID-19. The duration of infectious virus shedding ranged from 0 to 20 days post onset of symptoms (median 8 days, IQR 5 - 11). The probability of detecting infectious virus dropped below 5% after 15,2 days post onset of symptoms (95% confidence interval (CI) 13,4 - 17,2). Viral loads above 7 log10 RNA copies/mL were independently associated with detection of infectious SARS-CoV-2 from the respiratory tract (odds ratio [OR]; CI 14,7 (3,57-58,1; p<0,001). A serum neutralizing antibody titre of at least 1:20 (OR of 0,01 (CI 0,003-0,08; p<0,001) was independently associated with non-infectious SARS-CoV-2. Implications of all the available evidenceInfection prevention and control guidelines should take into account that patients with severe or critical COVID-19 may shed infectious virus for longer periods of time compared to what has been reported for in patients with mild COVID-19. Quantitative viral RNA load assays and serological assays should be used for test-based strategies to discontinue or de-escalate infection prevention and control precautions.

18.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-060350

RESUMO

COVID-19, caused by SARS-CoV-2, is an influenza-like disease with a respiratory route of transmission, yet clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids, enterocytes were readily infected by SARS-CoV and SARS-CoV-2 as demonstrated by confocal- and electron-microscopy. Consequently, significant titers of infectious viral particles were measured. mRNA expression analysis revealed strong induction of a generic viral response program. We conclude that intestinal epithelium supports SARS-CoV-2 replication. One Sentence SummarySARS-CoV-2 infection of enterocytes in human small intestinal organoids

19.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-057810

RESUMO

The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current COVID-19 outbreak. In this proof-of-concept study, we explored the potential of targeted mass spectrometry based (MS) proteomics for the detection of SARS-CoV-2 proteins in both research samples and clinical specimens. First, we assessed the limit of detection for several SARS-CoV-2 proteins by parallel reaction monitoring (PRM) MS in infected Vero E6 cells. For tryptic peptides of Nucleocapsid protein, the limit of detection was in the mid-attomole range (9E-13 g). Next, this PRM methodology was applied to the detection of viral proteins in various COVID-19 patient clinical specimens, such as sputum and nasopharyngeal swabs. SARS-CoV-2 proteins were detected in these samples with high sensitivity in all specimens with PCR Ct values <24 and in several samples with higher CT values. A clear relationship was observed between summed MS peak intensities for SARS-CoV-2 proteins and Ct values reflecting the abundance of viral RNA. Taken together, these results suggest that targeted MS based proteomics may have the potential to be used as an additional tool in COVID-19 diagnostics.

20.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-044503

RESUMO

SARS-CoV-2, a coronavirus that newly emerged in China in late 2019 1,2 and spread rapidly worldwide, caused the first witnessed pandemic sparked by a coronavirus. As the pandemic progresses, information about the modes of transmission of SARS-CoV-2 among humans is critical to apply appropriate infection control measures and to slow its spread. Here we show that SARS-CoV-2 is transmitted efficiently via direct contact and via the air (via respiratory droplets and/or aerosols) between ferrets. Intranasal inoculation of donor ferrets resulted in a productive upper respiratory tract infection and long-term shedding, up to 11 to 19 days post-inoculation. SARS-CoV-2 transmitted to four out of four direct contact ferrets between 1 and 3 days after exposure and via the air to three out of four independent indirect recipient ferrets between 3 and 7 days after exposure. The pattern of virus shedding in the direct contact and indirect recipient ferrets was similar to that of the inoculated ferrets and infectious virus was isolated from all positive animals, showing that ferrets were productively infected via either route. This study provides experimental evidence of robust transmission of SARS-CoV-2 via the air, supporting the implementation of community-level social distancing measures currently applied in many countries in the world and informing decisions on infection control measures in healthcare settings 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...