Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 110(24): 11823-31, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16800484

RESUMO

The rate and selectivity of chemical reactions on transition-metal surfaces can be controlled by using different bimetallic combinations. The interaction of bimetallic components leads to a change in the electronic properties of the surface, which in turn produces a change in chemical reactivity. In the current paper, we illustrate the correlation of the electronic properties of bimetallic surfaces with the reaction pathways of C2 hydrocarbons. Density functional theory (DFT) was used to study the binding of hydrogen, ethylene, acetylene, ethyl, and vinyl on monometallic and bimetallic transition-metal surfaces. The binding energies of these species were found to correlate with the d-band centers of these surfaces. The binding energies for hydrogen atoms on bimetallic surfaces were lower than for those on the corresponding parent metal surfaces. This trend was consistent for ethylene and acetylene binding. Comparative studies between acetylene and ethylene revealed that acetylene was more strongly bonded to the monometallic and the bimetallic surfaces than was ethylene. Bond order conservation (BOC) theory was used to calculate the activation barriers for ethyl dehydrogenation to ethylene and vinyl dehydrogenation to acetylene. The activation barriers for these reactions were correlated with the surface d-band center of the substrates.

2.
J Phys Chem B ; 109(6): 2227-33, 2005 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851215

RESUMO

Styrene oxide undergoes an activated ring opening on Ag(111) at temperatures above 200 K. The product of this reaction is a stable oxametallacycle intermediate. The structure of this species has been obtained by density functional theory calculations and the computed vibrational spectrum is consistent with the experimental spectrum obtained using high-resolution electron energy loss spectroscopy. The oxametallacycle formed by ring-opening styrene oxide is structurally analogous to that previously observed for ring opening of epoxybutene on Ag(110) and represents the largest member of this adsorbate structure class yet isolated. In both cases, the epoxide ring opens at the carbon bearing the pendant unsaturated group, and the pendant group (phenyl in styrene oxide) is oriented nearly parallel to the surface plane. The oxametallacycle formed from styrene oxide reacts at 485 K to regenerate styrene oxide plus small amounts of phenylacetaldehyde. This peak temperature is similar to that previously reported for generation of styrene oxide from adsorbed styrene and oxygen atoms on Ag(111), suggesting that the epoxidation proceeds via the oxametallacycle intermediate isolated in the present work.

3.
Phys Rev Lett ; 93(15): 156801, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15524919

RESUMO

Periodic density functional calculations are used to illustrate how the combination of strain and ligand effects modify the electronic and surface chemical properties of Ni, Pd, and Pt monolayers supported on other transition metals. Strain and the ligand effects are shown to change the width of the surface d band, which subsequently moves up or down in energy to maintain a constant band filling. Chemical properties such as the dissociative adsorption energy of hydrogen are controlled by changes induced in the average energy of the d band by modification of the d-band width.

4.
J Chem Phys ; 120(21): 10240-6, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15268048

RESUMO

The modification of the electronic and chemical properties of Pt(111) surfaces by subsurface 3d transition metals was studied using density-functional theory. In each case investigated, the Pt surface d-band was broadened and lowered in energy by interactions with the subsurface 3d metals, resulting in weaker dissociative adsorption energies of hydrogen and oxygen on these surfaces. The magnitude of the decrease in adsorption energy was largest for the early 3d transition metals and smallest for the late 3d transition metals. In some cases, dissociative adsorption was calculated to be endothermic. The surfaces investigated in this study had no lateral strain in them, demonstrating that strain is not a necessary factor in the modification of bimetallic surface properties. The implications of these findings are discussed in the context of catalyst design, particularly for fuel cell electrocatalysts.

5.
Chem Rev ; 101(4): 953-96, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11709862

RESUMO

The goal of the "Opportunities for Catalysis Research in Carbon Management" workshop was to review within the context of greenhouse gas/carbon issues the current state of knowledge, barriers to further scientific and technological progress, and basic scientific research needs in the areas of H2 generation and utilization, light hydrocarbon activation and utilization, carbon dioxide activation, utilization, and sequestration, emerging techniques and research directions in relevant catalysis research, and in catalysis for more efficient transportation engines. Several overarching themes emerge from this review. First and foremost, there is a pressing need to better understand in detail the catalytic mechanisms involved in almost every process area mentioned above. This includes the structures, energetics, lifetimes, and reactivities of the species thought to be important in the key catalytic cycles. As much of this type of information as is possible to acquire would also greatly aid in better understanding perplexing, incomplete/inefficient catalytic cycles and in inventing new, efficient ones. The most productive way to attack such problems must include long-term, in-depth fundamental studies of both commercial and model processes, by conventional research techniques and, importantly, by applying various promising new physicochemical and computational approaches which would allow incisive, in situ elucidation of reaction pathways. There is also a consensus that more exploratory experiments, especially high-risk, unconventional catalytic and model studies, should be undertaken. Such an effort will likely require specialized equipment, instrumentation, and computational facilities. The most expeditious and cost-effective means to carry out this research would be by close coupling of academic, industrial, and national laboratory catalysis efforts worldwide. Completely new research approaches should be vigorously explored, ranging from novel compositions, fabrication techniques, reactors, and reaction conditions for heterogeneous catalysts, to novel ligands and ligation geometries (e.g., biomimetic), reaction media, and activation methods for homogeneous ones. The interplay between these two areas involving various hybrid and single-site supported catalyst systems should also be productive. Finally, new combinatorial and semicombinatorial means to rapidly create and screen catalyst systems are now available. As a complement to the approaches noted above, these techniques promise to greatly accelerate catalyst discovery, evaluation, and understanding. They should be incorporated in the vigorous international research effort needed in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...