Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 29(1): 393-402, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23215040

RESUMO

Polyoxometalates (H(3)PMo(12)O(40), H(3)PW(12)O(40), H(4)PMo(11)VO(40)) supported on oxygen- and alkyl-functionalized graphene sheets were investigated. Discrete molecular species were directly observed by electron microscopy at loadings below 20 wt.%. The interaction between the polyoxometalates and the graphene surface was found to significantly impact their vibrational spectra and a linear correlation between the frequency of the M-O(c)-M vibration and the dispersion was evidenced by FTIR. While bulk-like electronic properties were observed for small aggregates (2-5 nm), UV-vis spectroscopy and cyclic voltammetry revealed changes in the electronic structure of isolated molecular species as a result of their interaction with graphene. Because of the ability to disperse alkyl-functionalized graphene in a variety of polar and nonpolar solvents, the materials synthesized in this work provide an opportunity to disperse polyoxometalates in media in which they would not dissolve if unsupported.


Assuntos
Elétrons , Grafite/química , Oxigênio/química , Compostos de Tungstênio/química , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
2.
Langmuir ; 28(16): 6691-7, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22468991

RESUMO

Alkyl chains were grafted onto reduced graphene oxide sheets to allow their dispersion in toluene, a common and representative nonpolar solvent. The grafting occurred on a variety of oxygen-containing functionalities already present on reduced graphene oxide, such as hydroxyl and epoxide groups. The structure and the defect density of the sheets were not significantly altered during the synthesis. When dispersed in water-toluene mixtures, phase transfer from the aqueous to the organic phase was observed upon grafting. In addition, the dry powder obtained readily disperses in common organic solvents without the assistance of any sonication treatment.

3.
J Am Chem Soc ; 133(50): 20528-35, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22066750

RESUMO

Controlling the activity and selectivity of converting biomass derivatives to syngas (H(2) and CO) is critical for the utilization of biomass feedstocks as renewable sources for chemicals and fuels. One key chemistry in the conversion is the selective bond scission of the C-OH and C═O functionalities, which are present in many biomass derivatives. Because of the high molecular weight and low vapor pressure, it is relatively difficult to perform fundamental surface science studies of C6 sugars, such as glucose and fructose, using ultrahigh vacuum techniques. Glycolaldehyde (HOCH(2)CH═O) is the smallest molecule that contains both the C-OH and C═O functional groups, as well as the same C/O ratio as C6 sugars, and thus is selected as a probe molecule in the current study to determine how the presence of the C═O bond affects the reaction mechanism. Using a combination of density functional theory calculations and experimental measurements, our results indicate that the reaction pathway of glycolaldehyde to produce syngas can be enhanced by supporting monolayer Ni on a Pt substrate, which shows higher activity than either of the parent metals. Furthermore, the Pt substrate can be replaced by tungsten monocarbide to achieve similar activity and selectivity, indicating the possibility of using Ni/WC to replace Ni/Pt as active and selective catalysts with higher stability and lower cost.


Assuntos
Aldeídos/química , Glucose/química , Níquel/química , Biomassa , Sondas Moleculares
4.
J Am Chem Soc ; 133(20): 7996-8004, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21526776

RESUMO

Understanding and controlling bond-breaking sequences of oxygenates on transition metal catalysts can greatly impact the utilization of biomass feedstocks for fuels and chemicals. The decomposition of ethylene glycol, as the simplest representative of biomass-derived polyols, was studied via density functional theory (DFT) calculations to identify the differences in reaction pathways between Pt and the more active Ni/Pt bimetallic catalyst. Comparison of the computed transition states indicated three potentially feasible paths from ethylene glycol to C1 oxygenated adsorbates on Pt. While not important on Pt, the pathway to 1,2-dioxyethylene (OCH(2)CH(2)O) is favored energetically on the Ni/Pt catalyst. Temperature-programmed desorption (TPD) experiments were conducted with deuterated ethylene glycols for comparison with DFT results. These experiments confirmed that decomposition of ethylene glycol on Pt proceeds via initial O-H bond cleavage, followed by C-H and the second O-H bond cleavages, whereas on the Ni/Pt surface, both O-H bonds are cleaved initially. The results are consistent with vibrational spectra and indicate that tuning of the catalyst surface can selectively control bond breaking. Finally, the significant mechanistic differences in decomposition of polyols compared to that of monoalcohols and hydrocarbons serve to identify general trends in bond scission sequences.


Assuntos
Etilenoglicol/química , Isótopos/química , Níquel/química , Platina/química
7.
J Chem Phys ; 127(11): 114707, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17887870

RESUMO

Methanol was used as a probe molecule to examine the reforming activity of oxygenates on NiPt(111) and CoPt(111) bimetallic surfaces, utilizing density functional theory (DFT) modeling, temperature-programmed desorption, and high-resolution electron energy loss spectroscopy (HREELS). DFT results revealed a correlation between the methanol and methoxy binding energies and the surface d-band center of various NiPt(111) and CoPt(111) bimetallic surfaces. Consistent with DFT predictions, increased production of H2 and CO from methanol was observed on a Ni surface monolayer on Pt(111), designated as Ni-Pt-Pt(111), as compared to the subsurface monolayer Pt-Ni-Pt(111) surface. HREELS was used to verify the presence and subsequent decomposition of methoxy intermediates on NiPt(111) and CoPt(111) bimetallic surfaces. On Ni-Pt-Pt(111) the methoxy species decomposed to a formaldehyde intermediate below 300 K; this species reacted at approximately 300 K to form CO and H2. On Co-Pt-Pt(111), methoxy was stable up to approximately 350 K and decomposed to form CO and H2. Overall, trends in methanol reactivity on NiPt(111) bimetallic surfaces were similar to those previously determined for ethanol and ethylene glycol.

8.
Rev Sci Instrum ; 78(7): 072211, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17672742

RESUMO

A high-throughput parallel reactor system has been designed and constructed to improve the reliability of results from large diameter catalysts such as monoliths. The system, which is expandable, consists of eight quartz reactors, 23.5 mm in diameter. The eight reactors were designed with separate K type thermocouples and radiant heaters, allowing for the independent measurement and control of each reactor temperature. This design gives steady state temperature distributions over the eight reactors within 0.5 degrees C of a common setpoint from 50 to 700 degrees C. Analysis of the effluent from these reactors is performed using rapid-scan Fourier transform infrared (FTIR) spectroscopic imaging. The integration of this technique to the reactor system allows a chemically specific, truly parallel analysis of the reactor effluents with a time resolution of approximately 8 s. The capabilities of this system were demonstrated via investigation of catalyst preparation conditions on the direct epoxidation of ethylene, i.e., on the ethylene conversion and the ethylene oxide selectivity. The ethylene, ethylene oxide, and carbon dioxide concentrations were calibrated based on spectra from FTIR imaging using univariate and multivariate chemometric techniques. The results from this analysis showed that the calcination conditions significantly affect the ethylene conversion, with a threefold increase in the conversion when the catalyst was calcined for 3 h versus 12 h at 400 degrees C.


Assuntos
Técnicas de Química Combinatória/instrumentação , Calefação/instrumentação , Teste de Materiais/instrumentação , Termografia/instrumentação , Catálise , Técnicas de Química Combinatória/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Calefação/métodos , Teste de Materiais/métodos , Termografia/métodos
9.
J Colloid Interface Sci ; 303(1): 229-35, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16919666

RESUMO

The adsorption of glycine (NH2CH2COOH) was examined by scanning tunneling microscopy (STM) on TiO2(110) surfaces at room temperature. A (2x1) ordered overlayer was observed on the TiO2(110)-(1x1) surface. The adsorption of acetic acid and propanoic acid was also investigated on this surface and their STM images were quite similar to that of glycine. Since acetate and propanoate are formed by dissociative adsorption of these acids on TiO2(110), it is proposed that glycine adsorbs in the same way to form a glycinate. The amino group in the glycinate adlayer structurally analogous to those formed from aliphatic carboxylic acids would be extended away from the surface and potentially free to participate in additional reactions. The underlying structure of the TiO2 surface is important in determining the structure of the glycinate adlayer; no ordering of these adsorbates was observed on the TiO2(110)-(1x2) surface.

10.
J Phys Chem B ; 110(4): 1686-94, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16471734

RESUMO

The dehydrogenation and decarbonylation of ethylene glycol and ethanol were studied using temperature programmed desorption (TPD) on Pt(111) and Ni/Pt(111) bimetallic surfaces, as probe reactions for the reforming of oxygenates for the production of H2 for fuel cells. Ethylene glycol reacted via dehydrogenation to form CO and H2, corresponding to the desired reforming reaction, and via total decomposition to produce C(ad), O(ad), and H2. Ethanol reacted by three reaction pathways, dehydrogenation, decarbonylation, and total decomposition, producing CO, H2, CH4, C(ad), and O(ad). Surfaces prepared by deposition of a monolayer of Ni on Pt(111) at 300 K, designated Ni-Pt-Pt(111), displayed increased reforming activity compared to Pt(111), subsurface monolayer Pt-Ni-Pt(111), and thick Ni/Pt(111). Reforming activity was correlated with the d-band center of the surfaces and displayed a linear trend for both ethylene glycol and ethanol, with activity increasing as the surface d-band center moved closer to the Fermi level. This trend was opposite to that previously observed for hydrogenation reactions, where increased activity occurred on subsurface monolayers as the d-band center shifted away from the Fermi level. Extrapolation of the correlation between activity and the surface d-band center of bimetallic systems may provide useful predictions for the selection and rational design of bimetallic catalysts for the reforming of oxygenates.

11.
Langmuir ; 21(12): 5588-95, 2005 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-15924494

RESUMO

Photodeposition of Ag nanoparticles on commercial TiO2 particles and nanoparticles was performed in order to provide direct visualization of the spatial distribution of photoactive sites on sub-micrometer-scale and nanoscale TiO2 particle surfaces and to create materials for potential catalytic applications. HRTEM (high-resolution transmission electron microscopy) and HAADF-STEM (high-angle annular dark-field scanning transmission electron microscopy) were used to characterize these materials. The size and spatial distributions of the Ag nanoparticles on the commercial TiO2 were not uniform; the concentration of Ag was higher on grain boundaries and at the edges of these submicrometer particles. In the case of TiO2 nanoparticles, the size distribution of the Ag nanoparticles deposited was relatively uniform and independent of irradiation time and photon energy. The amount of Ag deposited on TiO2 nanoparticles was at least 6 times higher than that on the commercial samples for comparable irradiation conditions. Compared to the case of Ag photodeposition, the difference in the amount of Au photodeposited on TiO2 particles and nanoparticles was even greater, especially at low precursor concentrations. Photodeposition on TiO2 nanoparticles is suggested as a potential method for the preparation of Au/TiO2 catalysts, as loadings in excess of 10 wt % of uniform 1 nm metal particles were achieved in this work.

12.
J Am Chem Soc ; 126(26): 8086-7, 2004 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15225028

RESUMO

We have examined the mechanism by which Cs impacts the selectivity of ethylene epoxidation on silver. The main focus was analysis of promoter-intermediate and promoter-transition state interactions. We show that Cs enhances selectivity to EO by stabilizing the transition state involved in the formation of EO relative to the transition state that is involved in the combustion. It is found that adsorbed Cs induces significant electric fields over Ag(111). This effect can be understood in terms of simple dipole/dipole interactions where the transition state involved in the selective pathway has a favorable dipole orientation as compared to the transition state involved in combustion.

14.
J Am Chem Soc ; 125(14): 4034-5, 2003 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-12670209

RESUMO

Surface science experiments, DFT calculations, and kinetic isotope effect data are utilized to understand the elementary steps that govern the selectivity of silver catalysts for the partial oxidation of ethylene to produce ethylene oxide. It is proposed that selective and unselective pathways proceed via a common intermediate, the surface oxametallacycle. The structures of the transition states leading from this intermediate to selective and unselective products are calculated. From the calculated Gibbs free energies of activation for competing pathways, it is possible to predict selectivity to ethylene oxide as well as the magnitude of the kinetic isotope effect. The proposed mechanism is qualitatively and quantitatively in accord with experimental results.

15.
Proc Natl Acad Sci U S A ; 99 Suppl 2: 6471-5, 2002 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-11904387

RESUMO

Recent reports of C(60)-functionalized metal tips [Kelly, K. F., Sarkar, D., Hale, G. D., Oldenburg, S. J. & Halas, N. J. (1996) Science 273, 1371-1373] and carbon nanotube tips [Dai, H., Hafner, J. H., Rinzler, A. G., Colbert, D. T. & Smalley, R. E. (1996) Nature (London) 384, 147-151] demonstrate the potential of controlling the chemical identity and geometric structure of tip atoms in scanning tunneling microscopy (STM). This work reports the performance of a heteropolyacid (HPA)-functionalized Pt/Ir tip, which was formulated by contacting a mechanically formed tip with a solution of H(3)PW(12)O(40) molecules. Attachment of an H(3)PW(12)O(40) molecule on the metal tip was confirmed by observing the characteristic negative differential resistance (NDR) behavior of H(3)PW(12)O(40) in tunneling spectroscopy. Atomic resolution images of bare graphite as well as of H(6)P(2)W(18)O(62) HPA monolayers on graphite were successfully obtained with a Pt/Ir-HPA tip. In the H(3)PW(12)O(40) molecule on a metal tip, it is likely that a terminal oxygen of WO (an oxygen species projecting outward from the pseudospherical H(3)PW(12)O(40) molecule) serves as an atomically sharp and stable tip. Additionally, superimposed superperiodic structures commensurate with the underlying graphite lattice were regularly observed with the modified tips. This result suggests that tip functionalization with these metal oxide molecules may enhance resolution in a fashion analogous to functionalization with C(60).

16.
Inorg Chem ; 41(5): 1292-8, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11874367

RESUMO

Nanoscale characterization of acid and redox properties of Keggin-type heteropolyacids (HPAs) with different heteroatoms, H(n)MW(12)O(40) (M = P, Si, B, Co), was carried out by scanning tunneling microscopy (STM) and tunneling spectroscopy (TS) in this study. HPA samples were deposited on highly oriented pyrolytic graphite surfaces to obtain images and tunneling spectra by STM before and after pyridine adsorption. All HPA samples formed well-ordered 2-dimensional arrays on graphite before and after pyridine exposure. NDR (negative differential resistance) peaks were observed in the tunneling spectra. Those measured for fresh HPA samples appeared at less negative voltages with increasing reduction potential of the HPAs and with increases in the electronegativity of the heteroatom, but with decreases in the overall negative charge of the heteropolyanions. These results support the conclusion that more reducible HPA samples show NDR behavior at less negative applied voltages in their tunneling spectra. Introduction of pyridine into the HPA arrays increased the lattice constants of the 2-dimensional HPA arrays by ca. 6 A. Exposure to pyridine also shifted NDR peak voltages of H(n)MW(12)O(40) (M = P, Si, B, Co) samples to less negative values in the TS measurements. The NDR shifts of HPAs obtained before and after pyridine adsorption were correlated with the acid strengths of the HPAs, suggesting that tunneling spectra measured by STM could serve to probe acid properties of HPAs. These results show how one can relate the bulk acid and redox properties of HPAs to surface properties of nanostructured HPA monolayers determined by STM.

17.
J Am Chem Soc ; 124(2): 310-7, 2002 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-11782183

RESUMO

Temperature programmed desorption, high-resolution electron energy loss spectroscopy (HREELS), and density functional theory (DFT) were used to investigate the adsorption and reaction of ethylene oxide (EO) on the Ag(111) surface. When EO is dosed onto Ag(111) at 140 K it adsorbs molecularly, desorbing without reaction at approximately 200 K. On the other hand, when EO is dosed at 250 K, the ring-opening of EO is activated, and a stable surface intermediate is formed. This intermediate reacts at 300 K to re-form EO plus a few other products. HREELS and DFT studies suggest that this stable intermediate is a surface oxametallacycle. Moreover, the activation energies observed for the reaction of the oxametallacycle to form EO are in an excellent agreement with the values reported for the steady-state ethylene epoxidation process. This work represents the first demonstration of surface oxametallacycle ring-closure to form EO. Comparison of the spectroscopic results obtained from silver single crystals and supported catalysts strongly suggests that oxametallacycles are important intermediates in silver-catalyzed ethylene epoxidation.

18.
J Colloid Interface Sci ; 240(1): 9-16, 2001 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-11446780

RESUMO

Atomic force microscopy (AFM) was used to study the effect of gravitational forces on the deposition of submicrometer colloidal particles onto solid surfaces to test the usual assumption that the contribution of gravity to the behavior of particles with diameters <1 &mgr;m is negligible. The effects of both particle size and density were examined using polystyrene sulfate latex, silica, and colloidal gold particles of several sizes ranging from 10 nm to 1 &mgr;m. The results show that significant differences are observed in the deposition of colloidal particles onto horizontal and vertical surfaces, under identical suspension conditions and exposure times, showing that gravitational forces can have a considerable effect. This effect was quantified by analysis of the AFM images. The experimental results are compared to calculations of the expected coverage and particle surface concentration assuming diffusion-limited adsorption and deposition by sedimentation. Gravity can be negligible for low-density particles with diameters considerably smaller than 1 &mgr;m. However, if the density of the colloidal particles is high, as in the case of colloidal gold, gravity can become a significant driving force for particle transport to the surface, even for particles with diameters much smaller than 100 nm. Copyright 2001 Academic Press.

19.
Inorg Chem ; 37(3): 398-406, 1998 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11670287

RESUMO

Reported here are both STM images and spatially resolved tunneling spectra of four different polyoxometalate (POM) structural class members: Keggin structure, H(3)[PW(12)O(40)] (spherical); Finke-Droege (FD) structure, Na(16)[Cu(4)(H(2)O)(2)(P(2)W(15)O(56))(2)] (prolate spheroidal); Wells-Dawson (WD) structure, H(7)[P(2)Mo(17)VO(62)] (prolate spheroidal); and Pope-Jeannin-Preyssler (PJP) structure, K(12.5)Na(1.5)[NaP(5)W(30)O(110)] and (NH(4))(14) [NaP(5)W(30)O(110)] (oblate spheroidal). In all four cases, the results demonstrate the formation of well-ordered 2-D inorganic POM anion arrays (composed of catalytically active molecular constituents) on graphite. Importantly, the image shapes and lattice spacings accurately reflect the POM anisotropies, permitting the determination of anion orientation with respect to the surface plane.

20.
Chem Rev ; 96(4): 1413-1430, 1996 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-11848796
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA