Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579369

RESUMO

Antibiotics target specific biosynthetic processes essential for bacterial growth. It is intriguing that several commonalities connect the bactericidal activity of seemingly disparate antibiotics, such as the numerous conditions that confer broad-spectrum antibiotic tolerance. Whether antibiotics kill in a manner unique to their specific targets or by a universal mechanism is a critical and contested subject. Herein, we demonstrate that the bactericidal activity of diverse antibiotics against Mycobacterium smegmatis and four evolutionarily divergent bacterial pathogens was blocked by conditions that worked to maintain intracellular pH homeostasis. Single-cell pH analysis demonstrated that antibiotics increased the cytosolic pH of M. smegmatis, while conditions that promoted proton entry into the cytosol prevented intracellular alkalization and antibiotic killing. These findings led to a hypothesis that posits antibiotic lethality occurs when antibiotics obstruct ATP-consuming biosynthetic processes while metabolically driven proton efflux is sustained despite the loss of proton influx via ATP synthase. Consequently, without a concomitant reduction in respiratory proton efflux, cell death occurs due to intracellular alkalization. Our findings indicate the effects of antibiotics on pH homeostasis should be considered a potential mechanism contributing to antibiotic lethality. IMPORTANCE Since the discovery of antibiotics, mortality due to bacterial infection has decreased dramatically. However, infections from difficult to treat bacteria such as Mycobacterium tuberculosis and multidrug-resistant pathogens have been on the rise. An understanding of the cascade of events that leads to cell death downstream of specific drug-target interactions is not well understood. We have discovered that killing by several classes of antibiotics was stopped by maintaining pH balance within the bacterial cell, consistent with a shared mechanism of antibiotic killing. Our findings suggest a mechanism of antibiotic killing that stems from the antibiotic's ability to increase the pH within bacterial cells by disrupting proton entry without affecting proton pumping out of cells. Knowledge of the core mechanism necessary for antibiotic killing could have a significant impact on the development of new lethal antibiotics and for the treatment of recalcitrant and drug-resistant pathogens.

2.
mBio ; 6(1)2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650400

RESUMO

UNLABELLED: Diverse colony morphologies are a hallmark of Burkholderia pseudomallei recovered from infected patients. We observed that stresses that inhibit aerobic respiration shifted populations of B. pseudomallei from the canonical white colony morphotype toward two distinct, reversible, yet relatively stable yellow colony variants (YA and YB). As accumulating evidence supports the importance of B. pseudomallei enteric infection and gastric colonization, we tested the response of yellow variants to hypoxia, acidity, and stomach colonization. Yellow variants exhibited a competitive advantage under hypoxic and acidic conditions and alkalized culture media. The YB variant, although highly attenuated in acute virulence, was the only form capable of colonization and persistence in the murine stomach. The accumulation of extracellular DNA (eDNA) was a characteristic of YB as observed by 4',6-diamidino-2-phenylindole (DAPI) staining of gastric tissues, as well as in an in vitro stomach model where large amounts of eDNA were produced without cell lysis. Transposon mutagenesis identified a transcriptional regulator (BPSL1887, designated YelR) that when overexpressed produced the yellow phenotype. Deletion of yelR blocked a shift from white to the yellow forms. These data demonstrate that YB is a unique B. pseudomallei pathovariant controlled by YelR that is specifically adapted to the harsh gastric environment and necessary for persistent stomach colonization. IMPORTANCE: Seemingly uniform populations of bacteria often contain subpopulations that are genetically identical but display unique characteristics which offer advantages when the population is faced with infrequent but predictable stresses. The pathogen Burkholderia pseudomallei is capable of forming several reversible colony types, and it interconverted between one white type and two yellow types under certain environmental stresses. The two yellow forms exhibited distinct advantages in low-oxygen and acidic environments. One yellow colony variant was the only form capable of chronic stomach colonization. Areas of gastric infection were marked by bacteria encased in a DNA matrix, and the yellow forms were able to produce large amounts of extracellular DNA in vitro. We also identified the regulator in control of yellow colony variant formation. These findings demonstrate a role in infection for colony variation and provide a mechanism for chronic stomach colonization-a frequently overlooked niche in melioidosis.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/crescimento & desenvolvimento , Melioidose/microbiologia , Estômago/microbiologia , Proteínas de Bactérias/genética , Burkholderia pseudomallei/química , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Cor , Humanos , Fenótipo
3.
mBio ; 5(3): e01106-14, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24895305

RESUMO

UNLABELLED: To survive a dynamic host environment, Mycobacterium tuberculosis must endure a series of challenges, from reactive oxygen and nitrogen stress to drastic shifts in oxygen availability. The mycobacterial Lsr2 protein has been implicated in reactive oxygen defense via direct protection of DNA. To examine the role of Lsr2 in pathogenesis and physiology of M. tuberculosis, we generated a strain deleted for lsr2. Analysis of the M. tuberculosis Δlsr2 strain demonstrated that Lsr2 is not required for DNA protection, as this strain was equally susceptible as the wild type to DNA-damaging agents. The lsr2 mutant did display severe growth defects under normoxic and hyperoxic conditions, but it was not required for growth under low-oxygen conditions. However, it was also required for adaptation to anaerobiosis. The defect in anaerobic adaptation led to a marked decrease in viability during anaerobiosis, as well as a lag in recovery from it. Gene expression profiling of the Δlsr2 mutant under aerobic and anaerobic conditions in conjunction with published DNA binding-site data indicates that Lsr2 is a global transcriptional regulator controlling adaptation to changing oxygen levels. The Δlsr2 strain was capable of establishing an early infection in the BALB/c mouse model; however, it was severely defective in persisting in the lungs and caused no discernible lung pathology. These findings demonstrate M. tuberculosis Lsr2 is a global transcriptional regulator required for control of genes involved in adaptation to extremes in oxygen availability and is required for persistent infection. IMPORTANCE: M. tuberculosis causes nearly two million deaths per year and infects nearly one-third of the world population. The success of this aerobic pathogen is due in part to its ability to successfully adapt to constantly changing oxygen availability throughout the infectious cycle, from the high oxygen tension during aerosol transmission to anaerobiosis within necrotic lesions. An understanding of how M. tuberculosis copes with these changes in oxygen tension is critical for its eventual eradication. Using a mutation in lsr2, we demonstrate that the Lsr2 protein present in all mycobacteria is a global transcriptional regulator in control of genes required for adaptation to changes in oxygen levels. M. tuberculosis lacking lsr2 was unable to adapt to both high and very low levels of oxygen and was defective in long-term anaerobic survival. Lsr2 was also required for disease pathology and for chronic infection in a mouse model of TB.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Consumo de Oxigênio , Anaerobiose , Animais , Modelos Animais de Doenças , Peróxido de Hidrogênio/farmacologia , Camundongos , Mitomicina/farmacologia , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Óxido Nítrico/farmacologia , Tuberculose/microbiologia , Virulência/genética
4.
Tuberculosis (Edinb) ; 89(4): 310-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19577518

RESUMO

Adaptation of Mycobacterium tuberculosis to an anaerobic dormant state that is tolerant to several antibacterials is mediated largely by a set of highly expressed genes controlled by DosR. A DosR mutant was constructed to investigate whether the DosR regulon is involved in antibacterial tolerance. We demonstrate that induction of the regulon is not required for drug tolerance either in vivo during a mouse infection or in vitro during anaerobic dormancy. Thus, drug tolerance observed in these models is due to other mechanisms such as the bacilli simply being in a non-replicating or low metabolic state. Our data also demonstrate that the DosR regulon is not essential for virulence during chronic murine infection. However, decreased lung pathology was observed in the DosR mutant. We also show that the DosR regulon genes are more highly conserved in environmental mycobacteria, than in pathogenic mycobacteria lacking a latent phase or environmental reservoir. It is possible that the DosR regulon could contribute to drug tolerance in human infections; however, it is not the only mechanism and not the primary mechanism for tolerance during a mouse infection. These data suggest that the regulon evolved not for pathogenesis or drug tolerance but for adaptation to anaerobic conditions in the environment and has been adapted by M. tuberculosis for survival during latent infection.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/fisiologia , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/fisiologia , Proteínas Quinases/metabolismo , Regulon , Tuberculose/fisiopatologia , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...