Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 612(7938): 156-161, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228656

RESUMO

The B cell antigen receptor (BCR) is composed of a membrane-bound class M, D, G, E or A immunoglobulin for antigen recognition1-3 and a disulfide-linked Igα (also known as CD79A) and Igß (also known as CD79B) heterodimer (Igα/ß) that functions as the signalling entity through intracellular immunoreceptor tyrosine-based activation motifs (ITAMs)4,5. The organizing principle of the BCR remains unknown. Here we report cryo-electron microscopy structures of mouse full-length IgM BCR and its Fab-deleted form. At the ectodomain (ECD), the Igα/ß heterodimer mainly uses Igα to associate with Cµ3 and Cµ4 domains of one heavy chain (µHC) while leaving the other heavy chain (µHC') unbound. The transmembrane domain (TMD) helices of µHC and µHC' interact with those of the Igα/ß heterodimer to form a tight four-helix bundle. The asymmetry at the TMD prevents the recruitment of two Igα/ß heterodimers. Notably, the connecting peptide between the ECD and TMD of µHC intervenes in between those of Igα and Igß to guide TMD assembly through charge complementarity. Weaker but distinct density for the Igß ITAM nestles next to the TMD, suggesting potential autoinhibition of ITAM phosphorylation. Interfacial analyses suggest that all BCR classes utilize a general organizational architecture. Our studies provide a structural platform for understanding B cell signalling and designing rational therapies against BCR-mediated diseases.


Assuntos
Microscopia Crioeletrônica , Receptores de Antígenos de Linfócitos B , Animais , Camundongos , Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/biossíntese , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/ultraestrutura , Transdução de Sinais , Fragmentos Fab das Imunoglobulinas , Domínios Proteicos , Fosforilação
2.
Front Immunol ; 12: 730766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630410

RESUMO

The SARS-CoV-2 pandemic has spread to all parts of the world and can cause life-threatening pneumonia and other severe disease manifestations known as COVID-19. This health crisis has resulted in a significant effort to stop the spread of this new coronavirus. However, while propagating itself in the human population, the virus accumulates mutations and generates new variants with increased fitness and the ability to escape the human immune response. Here we describe a color-based barcoded spike flow cytometric assay (BSFA) that is particularly useful to evaluate and directly compare the humoral immune response directed against either wild type (WT) or mutant spike (S) proteins or the receptor-binding domains (RBD) of SARS-CoV-2. This assay employs the human B lymphoma cell line Ramos, transfected for stable expression of WT or mutant S proteins or a chimeric RBD-CD8 fusion protein. We find that the alpha and beta mutants are more stably expressed than the WT S protein on the Ramos B cell surface and/or bind with higher affinity to the viral entry receptor ACE2. However, we find a reduce expression of the chimeric RBD-CD8 carrying the point mutation N501Y and E484K characteristic for the alpha and beta variant, respectively. The comparison of the humoral immune response of 12 vaccinated probands with 12 COVID-19 patients shows that after the boost, the S-specific IgG class immune response in the vaccinated group is similar to that of the patient group. However, in comparison to WT the specific IgG serum antibodies bind less well to the alpha variant and only poorly to the beta variant S protein. This is in line with the notion that the beta variant is an immune escape variant of SARS-CoV-2. The IgA class immune response was more variable than the IgG response and higher in the COVID-19 patients than in the vaccinated group. In summary, we think that our BSFA represents a useful tool to evaluate the humoral immunity against emerging variants of SARS-CoV-2 and to analyze new vaccination protocols against these variants.


Assuntos
COVID-19/imunologia , Separação Celular/métodos , Citometria de Fluxo/métodos , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Antivirais/metabolismo , Formação de Anticorpos , Feminino , Humanos , Imunização Secundária , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinação
4.
Anal Chem ; 86(24): 12152-8, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25479036

RESUMO

Steadily growing demands for identification and quantification of cellular metabolites in higher throughput have brought a need for new analytical technologies. Here, we developed a synthetic biological sensor system for quantifying metabolites from biological cell samples. For this, bacterial transcription factors were exploited, which bind to or dissociate from regulatory DNA elements in response to physiological changes in the cellular metabolite concentration range. Representatively, the bacterial pyruvate dehydrogenase (PdhR), trehalose (TreR), and l-arginine (ArgR) repressor proteins were functionalized to detect pyruvate, trehalose-6-phosphate (T6P), and arginine concentration in solution. For each transcription factor the mutual binding behavior between metabolite and DNA, their working range, and othogonality were determined. High-throughput, parallel processing, and automation were achieved through integration of the metabolic sensor system on a microfluidic large-scale integration (mLSI) chip platform. To demonstrate the functionality of the integrated metabolic sensor system, we measured diurnal concentration changes of pyruvate and the plant signaling molecule T6P within cell etxracts of Arabidopsis thaliana rosettes. The transcription factor sensor system is of generic nature and extendable on the microfluidic chip.


Assuntos
Dispositivos Lab-On-A-Chip , Fatores de Transcrição/análise , DNA/química , Dimetilpolisiloxanos/química , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...