Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 12(7): 1306-1324, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35509130

RESUMO

Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral polyneuropathy in humans, and its different subtypes are linked to mutations in dozens of different genes. Mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1) cause two types of CMT, demyelinating CMT4A and axonal CMT2K. The GDAP1-linked CMT genotypes are mainly missense point mutations. Despite clinical profiling and in vivo studies on the mutations, the etiology of GDAP1-linked CMT is poorly understood. Here, we describe the biochemical and structural properties of the Finnish founding CMT2K mutation H123R and CMT2K-linked R120W, both of which are autosomal dominant mutations. The disease variant proteins retain close to normal structure and solution behavior, but both present a significant decrease in thermal stability. Using GDAP1 variant crystal structures, we identify a side-chain interaction network between helices ⍺3, ⍺6, and ⍺7, which is affected by CMT mutations, as well as a hinge in the long helix ⍺6, which is linked to structural flexibility. Structural analysis of GDAP1 indicates that CMT may arise from disruption of specific intra- and intermolecular interaction networks, leading to alterations in GDAP1 structure and stability, and, eventually, insufficient motor and sensory neuron function.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Humanos , Mutação/genética , Proteínas do Tecido Nervoso/genética
2.
Glia ; 69(1): 124-136, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686211

RESUMO

Recent studies in neuron-glial metabolic coupling have shown that, in the CNS, astrocytes and oligodendrocytes support neurons with energy-rich lactate/pyruvate via monocarboxylate transporters (MCTs). The presence of such transporters in the PNS, in both Schwann cells and neurons, has prompted us to question if a similar interaction may be present. Here we describe the generation and characterization of conditional knockout mouse models where MCT1 or MCT4 is specifically deleted in Schwann cells (named MCT1 and MCT4 cKO). We show that MCT1 cKO and MCT4 cKO mice develop normally and that myelin in the PNS is preserved. However, MCT1 expressed by Schwann cells is necessary for long-term maintenance of motor end-plate integrity as revealed by disrupted neuromuscular innervation in mutant mice, while MCT4 appears largely dispensable for the support of motor neurons. Concomitant to detected structural alterations, lumbar motor neurons from MCT1 cKO mice show transcriptional changes affecting cytoskeletal components, transcriptional regulators, and mitochondria related transcripts, among others. Together, our data indicate that MCT1 plays a role in Schwann cell-mediated maintenance of motor end-plate innervation thus providing further insight into the emerging picture of the biology of the axon-glia metabolic crosstalk.


Assuntos
Células de Schwann , Animais , Camundongos , Transportadores de Ácidos Monocarboxílicos/genética , Placa Motora , Proteínas Musculares , Bainha de Mielina , Simportadores/genética
3.
Cell Rep ; 27(11): 3152-3166.e7, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189102

RESUMO

After a peripheral nerve lesion, distal ends of injured axons disintegrate into small fragments that are subsequently cleared by Schwann cells and later by macrophages. Axonal debris clearing is an early step of the repair process that facilitates regeneration. We show here that Schwann cells promote distal cut axon disintegration for timely clearing. By combining cell-based and in vivo models of nerve lesion with mouse genetics, we show that this mechanism is induced by distal cut axons, which signal to Schwann cells through PlGF mediating the activation and upregulation of VEGFR1 in Schwann cells. In turn, VEGFR1 activates Pak1, leading to the formation of constricting actomyosin spheres along unfragmented distal cut axons to mediate their disintegration. Interestingly, oligodendrocytes can acquire a similar behavior as Schwann cells by enforced expression of VEGFR1. These results thus identify controllable molecular cues of a neuron-glia crosstalk essential for timely clearing of damaged axons.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Fator de Crescimento Placentário/genética , Fator de Crescimento Placentário/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo
4.
Cell Rep ; 26(13): 3484-3492.e4, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917305

RESUMO

The sensation of pain is essential for the preservation of the functional integrity of the body. However, the key molecular regulators necessary for the initiation of the development of pain-sensing neurons have remained largely unknown. Here, we report that, in mice, inactivation of the transcriptional regulator PRDM12, which is essential for pain perception in humans, results in a complete absence of the nociceptive lineage, while proprioceptive and touch-sensitive neurons remain. Mechanistically, our data reveal that PRDM12 is required for initiation of neurogenesis and activation of a cascade of downstream pro-neuronal transcription factors, including NEUROD1, BRN3A, and ISL1, in the nociceptive lineage while it represses alternative fates other than nociceptors in progenitor cells. Our results thus demonstrate that PRDM12 is necessary for the generation of the entire lineage of pain-initiating neurons.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Nociceptores/fisiologia , Animais , Proteínas de Transporte/genética , Linhagem da Célula , Galinhas , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Nociceptividade/fisiologia , Fatores de Transcrição/metabolismo
5.
Hum Mol Genet ; 28(10): 1629-1644, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30624633

RESUMO

Mutations in MORC2 lead to an axonal form of Charcot-Marie-Tooth (CMT) neuropathy type 2Z. To date, 31 families have been described with mutations in MORC2, indicating that this gene is frequently involved in axonal CMT cases. While the genetic data clearly establish the causative role of MORC2 in CMT2Z, the impact of its mutations on neuronal biology and their phenotypic consequences in patients remains to be clarified. We show that the full-length form of MORC2 is highly expressed in both embryonic and adult human neural tissues and that Morc2 expression is dynamically regulated in both the developing and the maturing murine nervous system. To determine the effect of the most common MORC2 mutations, p.S87L and p.R252W, we used several in vitro cell culture paradigms. Both mutations induced transcriptional changes in patient-derived fibroblasts and when expressed in rodent sensory neurons. These changes were more pronounced and accompanied by abnormal axonal morphology, in neurons expressing the MORC2 p.S87L mutation, which is associated with a more severe clinical phenotype. These data provide insight into the neuronal specificity of the mutated MORC2-mediated phenotype and highlight the importance of neuronal cell models to study the pathophysiology of CMT2Z.


Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/genética , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Animais , Axônios/patologia , Doença de Charcot-Marie-Tooth/patologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Humanos , Mutação/genética , Células-Tronco Neurais , Ratos , Células Receptoras Sensoriais/patologia
6.
Proc Natl Acad Sci U S A ; 116(6): 2328-2337, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659145

RESUMO

Mutations in the MFN2 gene encoding Mitofusin 2 lead to the development of Charcot-Marie-Tooth type 2A (CMT2A), a dominant axonal form of peripheral neuropathy. Mitofusin 2 is localized at both the outer membrane of mitochondria and the endoplasmic reticulum and is particularly enriched at specialized contact regions known as mitochondria-associated membranes (MAM). We observed that expression of MFN2R94Q induces distal axonal degeneration in the absence of overt neuronal death. The presence of mutant protein leads to reduction in endoplasmic reticulum and mitochondria contacts in CMT2A patient-derived fibroblasts, in primary neurons and in vivo, in motoneurons of a mouse model of CMT2A. These changes are concomitant with endoplasmic reticulum stress, calcium handling defects, and changes in the geometry and axonal transport of mitochondria. Importantly, pharmacological treatments reinforcing endoplasmic reticulum-mitochondria cross-talk, or reducing endoplasmic reticulum stress, restore the mitochondria morphology and prevent axonal degeneration. These results highlight defects in MAM as a cellular mechanism contributing to CMT2A pathology mediated by mutated MFN2.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Animais , Axônios/metabolismo , Transporte Biológico , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Retículo Endoplasmático/ultraestrutura , Feminino , Marcha , Locomoção/genética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/ultraestrutura , Neurônios Motores/metabolismo , Denervação Muscular , Fibras Musculares de Contração Lenta , Transdução de Sinais
7.
EMBO J ; 37(23)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420557

RESUMO

A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders.


Assuntos
Carboxipeptidases/deficiência , Cerebelo/enzimologia , Neurônios Motores/enzimologia , Nervos Periféricos/enzimologia , Células de Purkinje/enzimologia , Coluna Vertebral/enzimologia , Degenerações Espinocerebelares/enzimologia , Cerebelo/patologia , Feminino , Proteínas de Ligação ao GTP , Humanos , Masculino , Neurônios Motores/patologia , Peptídeos/genética , Peptídeos/metabolismo , Nervos Periféricos/patologia , Processamento de Proteína Pós-Traducional , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Coluna Vertebral/patologia , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/patologia
8.
Hum Mol Genet ; 24(20): 5677-86, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188006

RESUMO

Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.


Assuntos
Axônios/patologia , Tremor Essencial/genética , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto , Oligodendroglia/patologia , Adulto , Animais , Análise Mutacional de DNA , Tremor Essencial/metabolismo , Tremor Essencial/fisiopatologia , Exoma , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , Linhagem , Transporte Proteico , Adulto Jovem , Peixe-Zebra/metabolismo
9.
Eur J Neurosci ; 42(2): 1788-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25899854

RESUMO

In order to identify new regulators of Schwann cell myelination potentially playing a role in peripheral nervous system (PNS) pathologies, we analysed gene expression profiling data from three mouse models of demyelinating neuropathies and from the developing PNS. This analysis revealed that Sox4, which encodes a member of the Sry-related high-mobility group box protein family, was consistently upregulated in all three analysed models of neuropathy. Moreover, Sox4 showed a peak in its expression during development that corresponded with the onset of myelination. To gain further insights into the role of Sox4 in PNS development, we generated a transgenic mouse that specifically overexpresses Sox4 in Schwann cells. Sox4 overexpression led to a temporary delay in PNS myelination without affecting axonal sorting. Importantly, we observed that, whereas Sox4 mRNA could be efficiently overexpressed, Sox4 protein expression in Schwann cells was strictly regulated. Finally, our data showed that enforced expression of Sox4 in the mouse model for Charcot-Marie-Tooth 4C aggravated its neuropathic phenotype. Together, these observations reveal that Sox4 contributes to the regulation of Schwann cell myelination, and also indicates its involvement in the pathophysiology of peripheral neuropathies.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Fatores de Transcrição SOXC/metabolismo , Células de Schwann/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
10.
Hum Mol Genet ; 22(20): 4224-32, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23777631

RESUMO

Charcot-Marie-Tooth disease (CMT) comprises a clinically and genetically heterogeneous group of peripheral neuropathies characterized by progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. Following the analysis of two consanguineous families affected by a medium to late-onset recessive form of intermediate CMT, we identified overlapping regions of homozygosity on chromosome 1p36 with a combined maximum LOD score of 5.4. Molecular investigation of the genes from this region allowed identification of two homozygous mutations in PLEKHG5 that produce premature stop codons and are predicted to result in functional null alleles. Analysis of Plekhg5 in the mouse revealed that this gene is expressed in neurons and glial cells of the peripheral nervous system, and that knockout mice display reduced nerve conduction velocities that are comparable with those of affected individuals from both families. Interestingly, a homozygous PLEKHG5 missense mutation was previously reported in a recessive form of severe childhood onset lower motor neuron disease (LMND) leading to loss of the ability to walk and need for respiratory assistance. Together, these observations indicate that different mutations in PLEKHG5 lead to clinically diverse outcomes (intermediate CMT or LMND) affecting the function of neurons and glial cells.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Genes Recessivos , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Adulto , Idade de Início , Animais , Criança , Cromossomos Humanos Par 1/genética , Códon sem Sentido , Feminino , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Doença dos Neurônios Motores/genética , Mutação de Sentido Incorreto , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Adulto Jovem
11.
Glia ; 61(7): 1041-51, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23553667

RESUMO

Mutations in SH3TC2 trigger autosomal recessive demyelinating Charcot-Marie-Tooth type 4C (CMT4C) neuropathy. Sh3tc2 is specifically expressed in Schwann cells and is necessary for proper myelination of peripheral axons. In line with the early onset of neuropathy observed in patients with CMT4C, our analyses of the murine model of CMT4C revealed that the myelinating properties of Sh3tc2-deficient Schwann cells are affected at an early stage. This early phenotype is associated with changes in the canonical Nrg1/ErbB pathway involved in control of myelination. We demonstrated that Sh3tc2 interacts with ErbB2 and plays a role in the regulation of ErbB2 intracellular trafficking from the plasma membrane upon Nrg1 activation. Interestingly, both the loss of Sh3tc2 function in mice and the pathological mutations present in CMT4C patients affect ErbB2 internalization, potentially altering its downstream intracellular signaling pathways. Altogether, our results indicate that the molecular mechanism for the axonal size sensing is disturbed in Sh3tc2-deficient myelinating Schwann cells, thus providing a novel insight into the pathophysiology of CMT4C neuropathy.


Assuntos
Proteínas de Transporte/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Transporte/genética , Células Cultivadas , Regulação da Expressão Gênica/genética , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Receptor ErbB-2/genética , Células de Schwann/metabolismo , Nervo Isquiático/citologia , Nervo Isquiático/metabolismo , Frações Subcelulares/metabolismo
12.
Am J Hum Genet ; 89(3): 474-9, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21907016

RESUMO

Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and cataplexy. Familial narcolepsy accounts for less than 10% of all narcolepsy cases. However, documented multiplex families are very rare and causative mutations have not been identified to date. To identify a causative mutation in familial narcolepsy, we performed linkage analysis in the largest ever reported family, which has 12 affected members, and sequenced coding regions of the genome (exome sequencing) of three affected members with narcolepsy and cataplexy. We successfully mapped a candidate locus on chromosomal region 6p22.1 (LOD score » 3.85) by linkage analysis. Exome sequencing identified a missense mutation in the second exon of MOG within the linkage region. A c.398C>G mutation was present in all affected family members but absent in unaffected members and 775 unrelated control subjects. Transient expression of mutant myelin oligodendrocyte glycoprotein (MOG) in mouse oligodendrocytes showed abnormal subcellular localization, suggesting an altered function of the mutant MOG. MOG has recently been linked to various neuropsychiatric disorders and is considered as a key autoantigen in multiple sclerosis and in its animal model, experimental autoimmune encephalitis. Our finding of a pathogenic MOG mutation highlights a major role for myelin and oligodendrocytes in narcolepsy and further emphasizes glial involvement in neurodegeneration and neurobehavioral disorders. [corrected].


Assuntos
Cromossomos Humanos Par 6/genética , Predisposição Genética para Doença/genética , Modelos Moleculares , Proteínas da Mielina/genética , Narcolepsia/genética , Animais , Sequência de Bases , Linhagem Celular , Genes Dominantes/genética , Ligação Genética , Genótipo , Humanos , Escore Lod , Camundongos , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Proteínas da Mielina/química , Glicoproteína Mielina-Oligodendrócito , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Espanha
13.
Development ; 138(18): 4025-37, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21862561

RESUMO

Radial sorting allows the segregation of axons by a single Schwann cell (SC) and is a prerequisite for myelination during peripheral nerve development. Radial sorting is impaired in models of human diseases, congenital muscular dystrophy (MDC) 1A, MDC1D and Fukuyama, owing to loss-of-function mutations in the genes coding for laminin α2, Large or fukutin glycosyltransferases, respectively. It is not clear which receptor(s) are activated by laminin 211, or glycosylated by Large and fukutin during sorting. Candidates are αß1 integrins, because their absence phenocopies laminin and glycosyltransferase deficiency, but the topography of the phenotypes is different and ß1 integrins are not substrates for Large and fukutin. By contrast, deletion of the Large and fukutin substrate dystroglycan does not result in radial sorting defects. Here, we show that absence of dystroglycan in a specific genetic background causes sorting defects with topography identical to that of laminin 211 mutants, and recapitulating the MDC1A, MDC1D and Fukuyama phenotypes. By epistasis studies in mice lacking one or both receptors in SCs, we show that only absence of ß1 integrins impairs proliferation and survival, and arrests radial sorting at early stages, that ß1 integrins and dystroglycan activate different pathways, and that the absence of both molecules is synergistic. Thus, the function of dystroglycan and ß1 integrins is not redundant, but is sequential. These data identify dystroglycan as a functional laminin 211 receptor during axonal sorting and the key substrate relevant to the pathogenesis of glycosyltransferase congenital muscular dystrophies.


Assuntos
Axônios/fisiologia , Movimento Celular/genética , Distroglicanas/fisiologia , Integrina beta1/fisiologia , Nervo Radial/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Distroglicanas/genética , Distroglicanas/metabolismo , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Bainha de Mielina/metabolismo , RNA Interferente Pequeno/farmacologia , Nervo Radial/efeitos dos fármacos , Nervo Radial/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...