Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6841, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891171

RESUMO

Throughout life animals inevitably encounter unforeseen threatening events. Activity of principal cells in the hippocampus is tuned for locations and for salient stimuli in the animals' environment thus forming a map known to be pivotal for guiding behavior. Here, we explored if a code of threatening stimuli exists in the CA1 region of the dorsal hippocampus of mice by recording neuronal response to aversive stimuli delivered at changing locations. We have discovered a rapidly emerging, location independent response to innoxious aversive stimuli composed of the coordinated activation of subgroups of pyramidal cells and connected interneurons. Activated pyramidal cells had higher basal firing rate, more probably participated in ripples, targeted more interneurons than place cells and many of them lacked place fields. We also detected aversive stimulus-coupled assemblies dominated by the activated neurons. Notably, these assemblies could be observed even before the delivery of the first aversive event. Finally, we uncovered the systematic shift of the spatial code from the aversive to, surprisingly, the reward location during the fearful stimulus. Our results uncovered components of the dorsal CA1 circuit possibly key for re-sculpting the spatial map in response to abrupt aversive events.


Assuntos
Hipocampo , Neurônios , Camundongos , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Interneurônios/fisiologia , Medo/fisiologia , Região CA1 Hipocampal/fisiologia
2.
PLoS Biol ; 21(6): e3002154, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37289847

RESUMO

Fear-related memory traces are encoded by sparse populations of hippocampal principal neurons that are recruited based on their inhibitory-excitatory balance during memory formation. Later, the reactivation of the same principal neurons can recall the memory. The details of this mechanism are still unclear. Here, we investigated whether disinhibition could play a major role in this process. Using optogenetic behavioral experiments, we found that when fear was associated with the inhibition of mouse hippocampal somatostatin positive interneurons, the re-inhibition of the same interneurons could recall fear memory. Pontine nucleus incertus neurons selectively inhibit hippocampal somatostatin cells. We also found that when fear was associated with the activity of these incertus neurons or fibers, the reactivation of the same incertus neurons or fibers could also recall fear memory. These incertus neurons showed correlated activity with hippocampal principal neurons during memory recall and were strongly innervated by memory-related neocortical centers, from which the inputs could also control hippocampal disinhibition in vivo. Nonselective inhibition of these mouse hippocampal somatostatin or incertus neurons impaired memory recall. Our data suggest a novel disinhibition-based memory mechanism in the hippocampus that is supported by local somatostatin interneurons and their pontine brainstem inputs.


Assuntos
Interneurônios , Memória , Camundongos , Animais , Interneurônios/metabolismo , Memória/fisiologia , Hipocampo/metabolismo , Medo/fisiologia , Somatostatina/metabolismo
3.
Front Neural Circuits ; 15: 784034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975416

RESUMO

Ascending serotonergic/glutamatergic projection from the median raphe region (MRR) to the hippocampal formation regulates both encoding and consolidation of memory and the oscillations associated with them. The firing of various types of MRR neurons exhibits rhythmic modulation coupled to hippocampal oscillatory activity. A possible intermediary between rhythm-generating forebrain regions and entrained ascending modulation may be the GABAergic circuit in the MRR, known to be targeted by a diverse array of top-down inputs. However, the activity of inhibitory MRR neurons in an awake animal is still largely unexplored. In this study, we utilized whole cell patch-clamp, single cell, and multichannel extracellular recordings of GABAergic and non-GABAergic MRR neurons in awake, head-fixed mice. First, we have demonstrated that glutamatergic and serotonergic neurons receive both transient, phasic, and sustained tonic inhibition. Then, we observed substantial heterogeneity of GABAergic firing patterns but a marked modulation of activity by brain states and fine timescale coupling of spiking to theta and ripple oscillations. We also uncovered a correlation between the preferred theta phase and the direction of activity change during ripples, suggesting the segregation of inhibitory neurons into functional groups. Finally, we could detect complementary alteration of non-GABAergic neurons' ripple-coupled activity. Our findings support the assumption that the local inhibitory circuit in the MRR may synchronize ascending serotonergic/glutamatergic modulation with hippocampal activity on a subsecond timescale.


Assuntos
Hipocampo , Vigília , Animais , Neurônios GABAérgicos , Camundongos , Neurônios Serotoninérgicos , Ritmo Teta
4.
Science ; 366(6469)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31780530

RESUMO

Adverse events need to be quickly evaluated and memorized, yet how these processes are coordinated is poorly understood. We discovered a large population of excitatory neurons in mouse median raphe region (MRR) expressing vesicular glutamate transporter 2 (vGluT2) that received inputs from several negative experience-related brain centers, projected to the main aversion centers, and activated the septohippocampal system pivotal for learning of adverse events. These neurons were selectively activated by aversive but not rewarding stimuli. Their stimulation induced place aversion, aggression, depression-related anhedonia, and suppression of reward-seeking behavior and memory acquisition-promoting hippocampal theta oscillations. By contrast, their suppression impaired both contextual and cued fear memory formation. These results suggest that MRR vGluT2 neurons are crucial for the acquisition of negative experiences and may play a central role in depression-related mood disorders.


Assuntos
Agressão/fisiologia , Anedonia/fisiologia , Aprendizagem da Esquiva/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Depressão/fisiopatologia , Núcleo Dorsal da Rafe/metabolismo , Potenciais Evocados/fisiologia , Habenula/fisiologia , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Ritmo Teta , Proteína Vesicular 2 de Transporte de Glutamato/genética
5.
Cell Rep ; 23(6): 1706-1715, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29742427

RESUMO

Animals build a model of their surroundings on the basis of information gathered during exploration. Rearing on the hindlimbs changes the vantage point of the animal, increasing the sampled area of the environment. This environmental knowledge is suggested to be integrated into a cognitive map stored by the hippocampus. Previous studies have found that damage to the hippocampus impairs rearing. Here, we characterize the operational state of the hippocampus during rearing episodes. We observe an increase of theta frequency paralleled by a sink in the dentate gyrus and a prominent theta-modulated fast gamma transient in the middle molecular layer. On the descending phase of rearing, a decrease of theta power is detected. Place cells stop firing during rearing, while a different subset of putative pyramidal cells is activated. Our results suggest that the hippocampus switches to a different operational state during rearing, possibly to update spatial representation with information from distant sources.


Assuntos
Comportamento Animal/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Animais , Giro Denteado/fisiologia , Córtex Entorrinal/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Ritmo Teta/fisiologia
6.
Epilepsia ; 56(12): 1879-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26514993

RESUMO

OBJECTIVE: In temporal lobe epilepsy (TLE), pathologic high frequency oscillations (pHFOs, 200-600 Hz) are present in the hippocampus, especially the dentate gyrus (DG). The pHFOs emerge during a latent period prior to the onset of spontaneous generalized seizures. We used a unilateral suprahippocampal injection of kainic acid (KA) mouse model of TLE to characterize the properties of hippocampal pHFOs during epileptogenesis. METHODS: In awake head-fixed mice, 4-14 days after KA-induced status epilepticus (SE), we recorded local field potentials (LFPs) with 64-channel silicon probes spanning from CA1 alveus to the DG hilus, or with glass pipettes in the DC mode in the CA1 str radiatum. RESULTS: The pHFOs, are observed simultaneously in the CA1 and the DG, or in the DG alone, as early as 4 days post-SE. The pHFOs ride on top of DC deflections, occur during motionless periods, persist through the onset of TLE, and are generated in bursts. Burst parameters remain remarkably constant during epileptogenesis, with a random number of pHFOs generated per burst. In contrast, pHFO duration and spectral dynamics evolve from short events at 4 days post-SE to prolonged discharges with complex spectral characteristics by 14 days post-SE. Simultaneous dural EEG recordings were exceedingly unreliable for detecting hippocampal pHFOs; therefore, such recordings may deceptively indicate a "silent" period even when massive hippocampal activity is present. SIGNIFICANCE: Our results demonstrate that hippocampal pHFOs exhibit a dynamic evolution during the epileptogenic period following SE, consistent with their role in transitioning to the chronic stage of TLE.


Assuntos
Epilepsia do Lobo Temporal/etiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/fisiopatologia , Convulsivantes/farmacologia , Giro Denteado/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Ácido Caínico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia
7.
Neuron ; 85(4): 726-41, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25661181

RESUMO

The nucleus is a critical subcellular compartment for the pathogenesis of polyglutamine disorders, including Huntington's disease (HD). Recent studies suggest the first 17-amino-acid domain (N17) of mutant huntingtin (mHTT) mediates its nuclear exclusion in cultured cells. Here, we test whether N17 could be a molecular determinant of nuclear mHTT pathogenesis in vivo. BAC transgenic mice expressing mHTT lacking the N17 domain (BACHD-ΔN17) show dramatically accelerated mHTT pathology exclusively in the nucleus, which is associated with HD-like transcriptionopathy. Interestingly, BACHD-ΔN17 mice manifest more overt disease-like phenotypes than the original BACHD mice, including body weight loss, movement deficits, robust striatal neuron loss, and neuroinflammation. Mechanistically, N17 is necessary for nuclear exclusion of small mHTT fragments that are part of nuclear pathology in HD. Together, our study suggests that N17 modifies nuclear pathogenesis and disease severity in HD mice by regulating subcellular localization of known nuclear pathogenic mHTT species.


Assuntos
Nucléolo Celular/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Expansão das Repetições de Trinucleotídeos/genética , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Nucléolo Celular/patologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Células HEK293/ultraestrutura , Humanos , Proteína Huntingtina , Doença de Huntington/complicações , Locomoção/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Tamanho do Órgão/genética , Fenótipo , Estrutura Terciária de Proteína/genética , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia
8.
Front Cell Neurosci ; 8: 222, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157218

RESUMO

GABAA receptors containing δ subunits (δ-GABAARs) are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS), and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs), and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz), a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV + INs). The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT) females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd (-/-)), and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS) or premenstrual dysphoric disorder (PMDD).

9.
J Neurosci Methods ; 221: 151-8, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24140423

RESUMO

BACKGROUND: Just like human neurological disorders, corresponding mouse models present multiple deficiencies. Estimating disease progression or potential treatment effectiveness in such models necessitates the use of time consuming and multiple tests usually requiring a large number of scarcely available genetically modified animals. NEW METHOD: Here we present a novel and simple single camera arrangement and analysis software for detailed motor function evaluation in mice walking on a wire mesh that provides complex 3D information (instantaneous position, speed, distance traveled, foot fault depth, duration, location, relationship to speed of movement, etc.). RESULTS: We investigated 3 groups of mice with various neurological deficits: (1) unilateral motor cortical stroke; (2) effects of moderate ethanol doses; and (3) aging (96-99 weeks old). We show that post stroke recovery can be divided into separate stages based on strikingly different characteristics of motor function deficits, some resembling the human motor neglect syndrome. Mice treated with moderate dose of alcohol and aged mice showed specific motor and exploratory deficits. COMPARISON WITH EXISTING METHODS: Other tests rely either partially or entirely on manual video analysis introducing a significant subjective component into the analysis, and analyze a single aspect of motor function. CONCLUSIONS: Our novel experimental approach provides qualitatively new, complex information about motor impairments and locomotor/exploratory activity. It should be useful for the detailed characterization of a broad range of human neurological disease models in mice, and for the more accurate assessment of disease progression or treatment effectiveness.


Assuntos
Comportamento Exploratório , Processamento de Imagem Assistida por Computador/métodos , Atividade Motora , Software , Acidente Vascular Cerebral/complicações , Gravação em Vídeo , Animais , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Recuperação de Função Fisiológica
10.
Cell ; 149(3): 708-21, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22541439

RESUMO

Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Interneurônios/metabolismo , Aprendizagem , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Sinapses
11.
J Neurosci ; 31(3): 851-60, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21248108

RESUMO

The hippocampal formation is one of the brain regions most sensitive to ischemic damage. However, there are no studies about changes in hippocampal neuronal activity during and after a selective unilateral hippocampal ischemia. We developed a novel unilateral cerebrovascular ischemia model in mice that selectively shuts down blood supply to the ipsilateral hippocampal formation. Using a modified version of the photothrombotic method, we stereotaxically targeted the initial ascending part of the longitudinal hippocampal artery in urethane anesthetized and rose bengal-injected mice. To block blood flow in the targeted artery, we photoactivated the rose bengal by illuminating the longitudinal hippocampal artery through an optical fiber inserted into the brain. In vivo field potential recordings in the CA1 region of the hippocampus before, during and after the induction of ischemia demonstrated a high-frequency discharge (HFD) reaching frequencies of >300 Hz and lasting 7-24 s during the illumination consistent with a massive synchronous neuronal activity. The HFD was invariably followed by a DC voltage shift and a decreased activity at both low (30-57 Hz)- and high (63-119 Hz)-gamma frequencies. This decrease in gamma activity lasted for the entire duration of the recordings (∼160 min) following ischemia. The contralateral hippocampus displayed HFDs but with different frequency spectra and without DC voltage shifts or long-lasting decreases in gamma oscillations. Our findings reveal for the first time the acute effects of unilateral hippocampal ischemia on ensemble hippocampal neuronal activities.


Assuntos
Isquemia Encefálica/fisiopatologia , Hipocampo/fisiopatologia , Neurônios/fisiologia , Animais , Ondas Encefálicas/fisiologia , Eletrofisiologia , Hipocampo/irrigação sanguínea , Camundongos
12.
Planta Med ; 74(10): 1235-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18622902

RESUMO

In this study, an attempt was made to integrate the effects of GINKGO BILOBA extract (GBE) in different experimental systems (IN VITRO cochlea, brain slice preparations and cortical cell culture) to elucidate whether these processes converge to promote neuroprotection or interfere with normal neural function. GBE increased the release of dopamine in the cochlea. NMDA-evoked currents were dose-dependently inhibited by rapid GBE application in cultured cortical cells. GBE moderately inhibited Na+ channels at depolarised holding potential in cortical cells. These inhibitory effects by GBE may sufficiently contribute to the prevention of excitotoxic damage in neurons. However, these channels also interact with memory formation at the cellular level. The lack of effect by GBE on dendritic spike initiation in neocortical layer 5 pyramidal neurons indicates that the integrative functions may remain intact during the inhibitory actions of GBE.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Dopamina/metabolismo , Extratos Vegetais/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Cóclea/metabolismo , Dendritos/metabolismo , Feminino , Ginkgo biloba , Técnicas In Vitro , Potenciais da Membrana , Camundongos , Gravidez , Sódio/metabolismo
13.
J Neurophysiol ; 99(1): 394-401, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18003878

RESUMO

Although dendritic spikes are generally thought to be restricted to the distal apical dendrite, we know very little about the possible modulatory mechanisms that set the spatial limits of dendritic spikes. Our experiments demonstrated that high-frequency trains of backpropagating action potentials avoided filtering in the apical dendrite and initiated all-or-none dendritic Ca(2+) transients associated with dendritic spikes in layer 5 pyramidal neurons of the prefrontal cortex. The block of hyperpolarization-activated currents (I(h)) by ZD7288 could shift the frequency threshold and decreased the number of action potentials required to produce the all-or-none Ca(2+) transient. Activation of alpha(2)-adrenergic receptors could also shift the frequency domain of spike induction to lower frequencies. Our data suggest that noradrenergic activity in the prefrontal cortex influences dendritic I(h) and extends the zone of dendritic spikes in the apical dendrite via alpha(2)-adrenergic receptors. This mechanism might be one cellular correlate of the alpha(2)-receptor-mediated actions on working memory.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Dendritos/metabolismo , Canais de Potássio/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Potenciais de Ação/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cardiotônicos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Norepinefrina/metabolismo , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Canais de Potássio/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
14.
Neurochem Int ; 51(5): 323-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17606313

RESUMO

Although the excitatory effects of noradrenaline have been thoroughly studied in the central nervous system, there is relatively little known about the adrenergic effects on Ca2+ dynamics of dendrites. In the present study, we imaged basal dendrites of layer 5 pyramidal neurons in the prefrontal cortex using two-photon microscopy. In our experiments noradrenaline, applied in the bath, enhanced excitability of layer 5 pyramidal neurons. The number of evoked action potentials following current injection to the soma increased by 44.7% on average. In the basal dendrites and spines the evoked Ca2+ responses were also markedly enhanced. Noradrenaline-induced effects could be blocked by the beta-adrenergic blocker propranolol. Our data, that activation of the noradrenergic system increases excitability of layer 5 pyramidal neurons via beta-adrenergic receptors and enhances Ca2+ signaling in basal dendrites, suggest a cellular site of action for noradrenaline to improve the integrative capabilities of dendrites.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Dendritos/metabolismo , Norepinefrina/farmacologia , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo , Absorciometria de Fóton , Potenciais de Ação/efeitos dos fármacos , Antagonistas Adrenérgicos beta/farmacologia , Animais , Cálcio/metabolismo , Dendritos/efeitos dos fármacos , Eletrofisiologia , Técnicas In Vitro , Masculino , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Propranolol/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores Adrenérgicos beta/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...