Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(22): 10706-10714, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38700424

RESUMO

For drug delivery systems, the mechanical properties of drug carriers are suspected to play a crucial role in the delivery process. However, there is a lack of reliable methods available to measure the mechanical properties of drug carriers, which hampers the establishment of a link between delivery efficiency and the mechanical properties of carriers. Lipid nanoparticles (LNPs) are advanced systems for delivering nucleic acids to target cell populations for vaccination purposes (mRNA) or the development of new drugs. Hence, it is crucial to develop reliable techniques to measure the mechanical properties of LNPs. In this article, we used AFM to image and probe the mechanical properties of LNPs which are loaded with two different biopolymers either pDNA or mRNA. Imaging the LNPs before and after indentation, as well as recording the retraction curve, enables us to obtain more insight into how the AFM tip penetrates into the particle and to determine whether the deformation of the LNPs is reversible. For pDNA, the indentation by the tip leads to irreversible rupture of the LNPs, while the deformation is reversible for the mRNA-loaded LNPs. Moreover, the forces reached for pDNA are higher than for mRNA. These results pave the way toward the establishment of the link between the LNP formulation and the delivery efficiency.


Assuntos
Lipídeos , Microscopia de Força Atômica , Nanopartículas , RNA Mensageiro , Nanopartículas/química , Lipídeos/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , DNA/química , Plasmídeos/química , Plasmídeos/metabolismo , Portadores de Fármacos/química , Lipossomos
2.
ACS Appl Mater Interfaces ; 15(29): 35674-35683, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37431993

RESUMO

Interfaces between a water droplet and a network of pillars produce eventually superhydrophobic, self-cleaning properties. Considering the surface fraction of the surface in interaction with water, it is possible to tune precisely the contact angle hysteresis (CAH) to low values, which is at the origin of the poor adhesion of water droplets, inducing their high mobility on such a surface. However, if one wants to move and position a droplet, the lower the CAH, the less precise will be the positioning on the surface. While rigid surfaces limit the possibilities of actuation, smart surfaces have been devised with which a stimulus can be used to trigger the displacement of a droplet. Light, electron beam, mechanical stimulation like vibration, or magnetism can be used to induce a displacement of droplets on surfaces and transfer them from one position to the targeted one. Among these methods, only few are reversible, leading to anisotropy-controlled orientation of the structured interface with water. Magnetically driven superhydrophobic surfaces are the most promising reprogramming surfaces that can lead to the control of wettability and droplet guidance.

3.
Langmuir ; 35(48): 15723-15728, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31566381

RESUMO

We describe how a long-range repulsive interaction can surreptitiously modify the effective geometry of approaching compliant surfaces, with significant consequences on friction. We investigated the behavior under shear and compression of mica surfaces coated with poly(N-isopropylacrylamide) pNIPAM-based cationic microgels. We show that local surface deformations as small as a few nanometers must be considered to understand the response of such surfaces under compression and shear, in particular when the range of action of normal and friction forces are significantly different, as is often the case for macromolecular lubrication. Under these conditions, a subtle interplay between normal forces and surface compliance may significantly reduce friction increment by limiting the minimum approach of the surfaces under pressure. We found that stiffening of compressed microgels confined in the region of closest approach make it increasingly difficult to reduce the gap between the mica surfaces, limiting the deformation of microgels distant from the contact apex and their contribution to global friction while increasing the effective contact radius. These findings reveal a simple mechanism for a robust control of lubrication: by properly tuning the stiffness and geometry of the interacting bodies, for an ad hoc long-range interaction, the growth of friction with applied normal load can be significantly hindered. Thus, substrate compliance is as significant as surface interaction in the design of low friction, long life tribological systems.

4.
Langmuir ; 35(28): 9133-9138, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31144817

RESUMO

Among the large variety of microfluidic platforms, surface devices are a world apart. Electrowetting systems are used to control the displacement of droplets among predetermined pathways. More confidential, superhydrophobic surfaces are more and more described as new elements to guide spherical droplet reactors. As such, they can exhibit confinement properties analogous to channel-based microfluidics. In this article, we describe a new strategy to use superhydrophobic surfaces as a permanently tilted microfluidic platform, on which droplets containing iron oxide nanoparticles are guided with permanent magnets. These droplets are fed with water through a capillary tube until their weight exceeds the magnetic field force. Thus, the volume at which the droplet rolls off the surface is only governed by the initial quantity of magnetic nanoparticles and the tilting angle of the surface. This phenomenon provides a strategy for droplet dilution in a simple and reproducible manner, which is not that easy in microchannels, and a key advantage of open systems. As a proof of concept, we used this platform to prepare magnetic filaments by a salting-out process already described in large batches. By reducing salt concentration on the platform, we are able to control the electrostatic attractive interactions between iron oxide nanoparticles coated with poly(acrylic acid) and a positively charged polyelectrolyte [poly(diallyldimethylammonium chloride)]. The formation of nanostructured filaments was conducted in 2 min while more than 30 min was required for dialysis. Our results also illustrate the power of microfluidic reaction processes because such magnetic filaments could not be obtained through direct batch dilution because of mixing issues. Such microfluidic platforms could be useful for the efficient and simple dilution of systems where reactivity is controlled by concentration.

5.
Soft Matter ; 13(8): 1624-1633, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28133673

RESUMO

In the dynamic rupture of laminated glass, it is essential to maximize energy dissipation. To investigate the mechanisms of energy dissipation, we have experimentally studied the delamination and stretching of a polymeric viscoelastic interlayer sandwiched between glass plates. We find that there is a velocity and temperature domain in which delamination fronts propagate in a steady state manner. At lower velocities, fronts are unstable, while at higher velocities, the polymer ruptures. Studying the influence of the interlayer thickness, we have shown that the macroscopic work of fracture during the delamination of the interlayer can be divided in two main components: (1) a near crack work of fracture which is related to the interfacial rupture and to the polymer deformation in the crack vicinity. (2) A bulk stretching work, which relates to the stretching of the interlayer behind the delamination front. Digital image correlation measurements showed that the characteristic length scale over which this stretching occurs is of the order of the interlayer thickness. Finally, an estimate of the bulk stretching work was provided, based on a simple uniaxial tensile test.

6.
Soft Matter ; 12(28): 6067-72, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27373469

RESUMO

We have carried out wetting experiments on textured surfaces with high aspect ratio asperities in the Wenzel state. When inclination is imparted to the asperities, we observe a strictly unidirectional spreading opposite to the direction in which the asperities point. The advancing contact angle decreases markedly as inclination increases. A crude numerical analysis successfully accounts for this behaviour, highlighting the interplay between Gibbs pinning at the top of the structures and imbibition along the valleys between them. In Gibbs pinning non-linearities play a major role and we find that simple line averaging - i.e. a rule of mixture - cannot account for this evolution except for weak surface perturbations, i.e. large inclinations.

7.
Phys Med Biol ; 59(6): 1389-406, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24584004

RESUMO

The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of elastic properties of newly formed bone tissue as a function of healing time. To do so, nanoindentation and micro-Brillouin scattering techniques are coupled following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 µm from the cortical bone surface, leading to an initially empty cavity. Two rabbits were sacrificed after 7 and 13 weeks of healing time. The histological analyses allow us to distinguish mature and newly formed bone tissue. The bone mechanical properties were measured in mature and newly formed bone tissue. Analysis of variance and Tukey-Kramer tests reveals a significant effect of healing time on the indentation modulus and ultrasonic velocities of bone tissue. The results show that bone mass density increases by 12.2% (2.2% respectively) between newly formed bone at 7 weeks (13 weeks respectively) and mature bone. The dependence of bone properties on healing time may be explained by the evolution of bone microstructure and mineralization.


Assuntos
Módulo de Elasticidade , Próteses e Implantes , Tíbia/fisiologia , Titânio , Cicatrização , Animais , Fenômenos Biomecânicos , Densidade Óssea , Feminino , Teste de Materiais , Osseointegração , Coelhos , Propriedades de Superfície , Fatores de Tempo
8.
Langmuir ; 30(6): 1544-9, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24460529

RESUMO

A clue to understand wetting hysteresis on superhydrophobic surfaces is the relation between receding contact angle and surface textures. When the surface textures are large, there is a significant distribution of local contact angles around the drop. As seen from the cross section, the apparent contact angle oscillates as the triple line recedes. Our experiments demonstrate that the origin of these oscillations is a finite size effect. Combining side and bottom views of the drop, we take into account the 3D conformation of the surface near the edge to evaluate an intrinsic contact angle from the oscillations of the apparent contact angle. We find that for drops receding on axisymmetric textures the intrinsic receding contact angle is the minimum value of the oscillation while for a square lattice it is the maximum.

9.
Langmuir ; 29(47): 14473-81, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24171391

RESUMO

The contact between two layers of double-chained C18 surfactants adsorbed on silica has been investigated. Using a custom-made surface forces apparatus with high stiffness, we have studied the process of (1) compression and collapse of the layers and (2) surface separation after layer collapse. A continuum mechanics model accounts for the compression and collapse of the surfactant layers. The layer compressibility and molecular energy of rupture can be inferred directly. When the surfaces are rinsed in deionized water, an intriguing structural force is observed: the resulting attractive interaction induces the diffusion of surfactant to the contact area, with the gradual buildup of a capillary bridge of the pure smectic phase of the surfactant. Models are proposed to analyze the force profile.

10.
Phys Rev Lett ; 110(4): 046101, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25166177

RESUMO

We have investigated the depinning of the contact line on superhydrophobic surfaces with anisotropic periodic textures. By direct observation of the contact line conformation, we show that the mobility is mediated by kink defects. Full 3D simulations of the shape of the liquid surface near the solid confirm that kinks account for the measured wetting properties. This behavior, which is similar to the Peierls-Nabarro mechanism for dislocations, may open perspectives for the optimization of wetting hysteresis by design.

11.
Phys Rev Lett ; 108(11): 116102, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22540491

RESUMO

Compressively stressed thin films with low adhesion frequently buckle and delaminate simultaneously into telephone cords. Although these buckles have been studied for decades, no complete understanding of their propagation has so far been presented. In this study, we have coupled a nonlinear plate deformation with a cohesive zone model to simulate the kinematics of a propagating telephone cord buckle in very close agreement with experimental observations. Proper inclusion of the dependence of an adhesion upon the mode mixity proved to be central to the success of the approach. The clarification of the mechanism promises better understanding of buckle morphologies.

12.
J Biomech Eng ; 134(2): 021007, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22482674

RESUMO

The characterization of the biomechanical properties of newly formed bone tissue around implants is important to understand the osseointegration process. The objective of this study is to investigate the evolution of the hardness and indentation modulus of newly formed bone tissue as a function of healing time. To do so, a nanoindentation device is employed following a multimodality approach using histological analysis. Coin-shaped implants were placed in vivo at a distance of 200 µm from the cortical bone surface, leading to an initially empty cavity of 200 µm * 4.4 mm. Three New Zealand White rabbits were sacrificed after 4, 7, and 13 weeks of healing time. The bone samples were embedded and analyzed using histological analyses, allowing to distinguish mature and newly formed bone tissue. The bone mechanical properties were then measured in mature and newly formed bone tissue. The results are within the range of hardness and apparent Young's modulus values reported in previous literature. One-way ANOVA test revealed a significant effect of healing time on the indentation modulus (p < 0.001, F = 111.24) and hardness (p < 0.02, F = 3.47) of bone tissue. A Tukey-Kramer analysis revealed that the biomechanical properties of newly formed bone tissue (4 weeks) were significantly different from those of mature bone tissue. The comparison with the results obtained in Mathieu et al. (2011, "Micro-Brillouin Scattering Measurements in Mature and Newly Formed Bone Tissue Surrounding an Implant," J. Biomech. Eng., 133, 021006). shows that bone mass density increases by approximately 13.5% between newly formed bone (7 weeks) and mature bone tissue.


Assuntos
Testes de Dureza/métodos , Nanotecnologia/métodos , Osteogênese , Próteses e Implantes , Tíbia/citologia , Tíbia/fisiologia , Animais , Fenômenos Biomecânicos , Calcificação Fisiológica , Feminino , Coelhos , Fatores de Tempo , Titânio
13.
J Mech Behav Biomed Mater ; 8: 194-203, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22402166

RESUMO

Endosseous cementless implants are widely used in orthopaedic, maxillofacial and oral surgery. However, failures are still observed and remain difficult to anticipate as remodelling phenomena at the bone-implant interface are poorly understood. The assessment of the biomechanical strength of the bone-implant interface may improve the understanding of the osseointegration process. An experimental approach based on a mode III cleavage mechanical device aims at understanding the behaviour of a planar bone-implant interface submitted to torsional loading. To do so, coin-shaped titanium implants were inserted on the tibiae of a New Zealand white rabbit for seven weeks. After the sacrifice, mode III cleavage experiments were performed on bone samples. An analytical model was developed to understand the debonding process of the bone-implant interface. The model allowed to assess the values of different parameters related to bone tissue at the vicinity of the implant with the additional assumption that bone adhesion occurs over around 70% of the implant surface, which is confirmed by microscopy images. The approach allows to estimate different quantities related to the bone-implant interface such as: torsional stiffness (around 20.5 N m rad(-1)), shear modulus (around 240 MPa), maximal torsional loading (around 0.056 N.m), mode III fracture energy (around 77.5 N m(-1)) and stress intensity factor (0.27 MPa m(1/2)). This study paves the way for the use of mode III cleavage testing for the investigation of torsional loading strength of the bone-implant interface, which might help for the development and optimization of implant biomaterial, surface treatment and medical treatment investigations.


Assuntos
Fricção , Teste de Materiais/instrumentação , Próteses e Implantes , Tíbia , Titânio/química , Alumínio/química , Animais , Modelos Teóricos , Coelhos , Torque , Vanádio/química
14.
Lab Chip ; 12(2): 262-7, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22081085

RESUMO

We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without expensive high-vacuum lithography and etching techniques. The applicability of the fabricated device for single-molecule studies is demonstrated by measuring the extension of DNA molecules of different lengths confined in the nanochannels.


Assuntos
DNA/análise , Técnicas Analíticas Microfluídicas/instrumentação , Nanotecnologia/instrumentação , Sílica Gel/química , Silício/química , Impressão Molecular , Temperatura
15.
J Colloid Interface Sci ; 332(2): 382-8, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19200555

RESUMO

In the context of glass fiber manufacture, the onset of lubrication by a C(18) double-chained cationic surfactant has been investigated at high normal contact pressures. Comparison with adsorption kinetics demonstrates that lubrication is not directly connected to the surfactant surface excess but originates from the transition to a defect-free bilayer that generates limited dissipation. The impact of ionic strength and shear rate has also been studied.

16.
J Colloid Interface Sci ; 331(1): 178-84, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19059599

RESUMO

The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.

18.
Langmuir ; 23(23): 11643-50, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17918868

RESUMO

Surface roughness is known to easily suppress the adhesion of elastic surfaces. Here, a simple model for the contact of viscoelastic rough surfaces with significant levels of adhesion is presented. This approach is derived from our previous model (Barthel, E.; Haiat, G. Langmuir 2002, 18, 9362) for the adhesive contact of viscoelastic spheres. For simplicity, a simple loading/unloading history (infinitely fast loading and constant pull-out velocity) is assumed. The model provides approximate analytical expressions for the asperity response and exhibits the full viscoelastic adhesive contact phenomenology such as stress relaxation inside the contact zone and creep at the contact edges. Combining this model with a Greenwood-Williamson statistical modeling of rough surfaces, we propose a quantitative assessment of the adhesion to rough viscoelastic surfaces. We show that moderate viscoelasticity efficiently restores adhesion on rough surfaces over a wide dynamic range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...