Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 18(16): 1639-1649, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28557180

RESUMO

Unbiased chemoproteomic profiling of small-molecule interactions with endogenous proteins is important for drug discovery. For meaningful results, all protein classes have to be tractable, including G protein-coupled receptors (GPCRs). These receptors are hardly tractable by affinity pulldown from lysates. We report a capture compound (CC)-based strategy to target and identify GPCRs directly from living cells. We synthesized CCs with sertindole attached to the CC scaffold in different orientations to target the dopamine D2 receptor (DRD2) heterologously expressed in HEK 293 cells. The structure-activity relationship of sertindole for DRD2 binding was reflected in the activities of the sertindole CCs in radioligand displacement, cell-based assays, and capture compound mass spectrometry (CCMS). The activity pattern was rationalized by molecular modelling. The most-active CC showed activities very similar to that of unmodified sertindole. A concentration of DRD2 in living cells well below 100 fmol used as an experimental input was sufficient for unambiguous identification of captured DRD2 by mass spectrometry. Our new CCMS workflow broadens the arsenal of chemoproteomic technologies to close a critical gap for the comprehensive characterization of drug-protein interactions.


Assuntos
Antagonistas dos Receptores de Dopamina D2/química , Imidazóis/química , Indóis/química , Receptores de Dopamina D2/análise , Animais , Antagonistas dos Receptores de Dopamina D2/síntese química , Antagonistas dos Receptores de Dopamina D2/efeitos da radiação , Células HEK293 , Humanos , Imidazóis/síntese química , Imidazóis/efeitos da radiação , Indóis/síntese química , Indóis/efeitos da radiação , Ligantes , Simulação de Acoplamento Molecular , Ensaio Radioligante , Ratos , Receptores de Dopamina D2/efeitos da radiação , Espiperona/química , Relação Estrutura-Atividade , Suínos , Espectrometria de Massas em Tandem , Raios Ultravioleta
2.
J Med Chem ; 59(10): 4664-75, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27074629

RESUMO

Structurally related inhibitors of a shared therapeutic target may differ regarding potential toxicity issues that are caused by different off-target bindings. We devised a differential competition capture compound mass spectrometry (dCCMS) strategy to effectively differentiate off-target profiles. Tolcapone and entacapone are potent inhibitors of catechol-O-methyl transferase (COMT) for the treatment of Parkinson's disease. Tolcapone is also known for its hepatotoxic side effects even though it is therapeutically more potent than entacapone. Here, we identified 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) as a possible toxicity-causing off-target of tolcapone, and this protein is not bound by the less toxic COMT inhibitor entacapone. Moreover, two novel compounds from a focused library synthesized in-house, N(2),N(2),N(3),N(3)-tetraethyl-6,7-dihydroxy-5-nitronaphthalene-2,3-dicarboxamide and 5-(3,4-dihydroxy-5-nitrobenzylidene)-3-ethylthiazolidine-2,4-dione, were utilized to gain insight into the structure-activity relationships in binding to COMT and the novel off-target HIBCH. These compounds, especially N(2),N(2),N(3),N(3)-tetraethyl-6,7-dihydroxy-5-nitronaphthalene-2,3-dicarboxamide, could serve as starting point for the development of improved and more specific COMT inhibitors.


Assuntos
Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Inibidores de Catecol O-Metiltransferase/síntese química , Inibidores de Catecol O-Metiltransferase/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
3.
Chem Sci ; 6(10): 5473-5490, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29861888

RESUMO

Double cyclization of short linear peptides obtained by solid phase peptide synthesis was used to prepare bridged bicyclic peptides (BBPs) corresponding to the topology of bridged bicyclic alkanes such as norbornane. Diastereomeric norbornapeptides were investigated by 1H-NMR, X-ray crystallography and CD spectroscopy and found to represent rigid globular scaffolds stabilized by intramolecular backbone hydrogen bonds with scaffold geometries determined by the chirality of amino acid residues and sharing structural features of ß-turns and α-helices. Proteome profiling by capture compound mass spectrometry (CCMS) led to the discovery of the norbornapeptide 27c binding selectively to calmodulin as an example of a BBP protein binder. This and other BBPs showed high stability towards proteolytic degradation in serum.

4.
J Proteomics ; 86: 97-104, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23684787

RESUMO

Trypanosomatid parasites of the genus Leishmania cause severe human diseases collectively termed leishmaniasis. Parasite ATP-binding proteins have emerged as potent targets for chemotherapeutic intervention. However, many parasite-specific ATP-binding proteins may escape current efforts in drug target identification, validation and deconvolution due to the lack of sequence conservation and functional annotation of these proteins in early branching eukaryotic trypanosomatids. Here, we selectively enriched for ATP-binding proteins from Leishmania donovani axenic promastigote and amastigote total protein extracts utilizing a Capture Compound™ (CC) linked to the ATP-competitive inhibitor staurosporine. As judged by in-gel kinase activity assay and competitive inhibition with free staurosporine, the CC specifically enriched for parasite phosphotransferases. Comparative nanoLC-MS(n) analysis identified 70 captured proteins, including 24 conserved protein kinases, and 32 hypothetical proteins with potential ATP-binding function. We identified conserved signature sequence motifs characteristic for staurosporine-binding protein kinases, and identified the hypothetical proteins LinJ.20.0280 and LinJ.09.1630 as novel ATP-binding proteins. Thus, functional enrichment procedures such as described here, combined with bio-informatics analyses and activity assays, provide powerful tools for the discovery of parasite-specific ATP-binding proteins that escape homology-based identification, which can be subsequently targeted for pharmacological intervention. BIOLOGICAL SIGNIFICANCE: Functional enrichment using a Capture Compound™ linked to the ATP-competitive inhibitor staurosporine provides a powerful new tool for the discovery of parasite-specific ATP-binding proteins that escape homology-based identification, which can be subsequently targeted for pharmacological intervention.


Assuntos
Proteínas de Transporte/isolamento & purificação , Leishmania donovani/metabolismo , Proteínas Quinases/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Estaurosporina/química , Trifosfato de Adenosina/metabolismo , Cromatografia Líquida/métodos , Ontologia Genética , Leishmania donovani/crescimento & desenvolvimento , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
5.
Mol Microbiol ; 84(2): 310-23, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22375702

RESUMO

Sexual development in fungi is a complex process involving the generation of new cell types and tissues - an essential step for all eukaryotic life. The characterization of sterile mutants in the ascomycete Sordaria macrospora has led to a number of proteins involved in sexual development, but a link between these proteins is still missing. Using a combined tandem-affinity purification/mass spectrometry approach, we showed in vivo association of developmental protein PRO22 with PRO11, homologue of mammalian striatin, and SmPP2AA, scaffolding subunit of protein phosphatase 2A. Further experiments extended the protein network to the putative kinase activator SmMOB3, known to be involved in sexual development. Extensive yeast two-hybrid studies allowed us to pinpoint functional domains involved in protein-protein interaction. We show for the first time that a number of already known factors together with new components associate in vivo to form a highly conserved multi-subunit complex. Strikingly, a similar complex has been described in humans, but the function of this so-called striatin interacting phosphatase and kinase (STRIPAK) complex is largely unknown. In S. macrospora, truncation of PRO11 and PRO22 leads to distinct defects in sexual development and cell fusion, indicating a role for the fungal STRIPAK complex in both processes.


Assuntos
Proteínas Fúngicas/metabolismo , Multimerização Proteica , Sordariales/crescimento & desenvolvimento , Cromatografia de Afinidade , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Espectrometria de Massas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...