Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 111(1): 9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26680771

RESUMO

DNA methylation affects transcriptional regulation and constitutes a drug target in cancer biology. In cardiac hypertrophy, DNA methylation may control the fetal gene program. We therefore investigated DNA methylation signatures and their dynamics in an in vitro model of cardiac hypertrophy based on engineered heart tissue (EHT). We exposed EHTs from neonatal rat cardiomyocytes to a 12-fold increased afterload (AE) or to phenylephrine (PE 20 µM) and compared DNA methylation signatures to control EHT by pull-down assay and DNA methylation microarray. A 7-day intervention sufficed to induce contractile dysfunction and significantly decrease promoter methylation of hypertrophy-associated upregulated genes such as Nppa (encoding ANP) and Acta1 (α-skeletal actin) in both intervention groups. To evaluate whether pathological consequences of AE are affected by inhibiting de novo DNA methylation we applied AE in the absence and presence of DNA methyltransferase (DNMT) inhibitors: 5-aza-2'-deoxycytidine (aza, 100 µM, nucleosidic inhibitor), RG108 (60 µM, non-nucleosidic) or methylene disalicylic acid (MDSA, 25 µM, non-nucleosidic). Aza had no effect on EHT function, but RG108 and MDSA partially prevented the detrimental consequences of AE on force, contraction and relaxation velocity. RG108 reduced AE-induced Atp2a2 (SERCA2a) promoter methylation. The results provide evidence for dynamic DNA methylation in cardiac hypertrophy and warrant further investigation of the potential of DNA methylation in the treatment of cardiac hypertrophy.


Assuntos
Cardiomegalia/genética , Cardiomegalia/metabolismo , Metilação de DNA/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Cardiomegalia/fisiopatologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Modelos Animais de Doenças , Imuno-Histoquímica , Imunoprecipitação , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Engenharia Tecidual/métodos , Transcriptoma
2.
Basic Res Cardiol ; 107(6): 307, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23099820

RESUMO

Increased afterload results in 'pathological' cardiac hypertrophy, the most important risk factor for the development of heart failure. Current in vitro models fall short in deciphering the mechanisms of hypertrophy induced by afterload enhancement. The aim of this study was to develop an experimental model that allows investigating the impact of afterload enhancement (AE) on work-performing heart muscles in vitro. Fibrin-based engineered heart tissue (EHT) was cast between two hollow elastic silicone posts in a 24-well cell culture format. After 2 weeks, the posts were reinforced with metal braces, which markedly increased afterload of the spontaneously beating EHTs. Serum-free, triiodothyronine-, and hydrocortisone-supplemented medium conditions were established to prevent undefined serum effects. Control EHTs were handled identically without reinforcement. Endothelin-1 (ET-1)- or phenylephrine (PE)-stimulated EHTs served as positive control for hypertrophy. Cardiomyocytes in EHTs enlarged by 28.4 % under AE and to a similar extent by ET-1- or PE-stimulation (40.6 or 23.6 %), as determined by dystrophin staining. Cardiomyocyte hypertrophy was accompanied by activation of the fetal gene program, increased glucose consumption, and increased mRNA levels and extracellular deposition of collagen-1. Importantly, afterload-enhanced EHTs exhibited reduced contractile force and impaired diastolic relaxation directly after release of the metal braces. These deleterious effects of afterload enhancement were preventable by endothelin-A, but not endothelin-B receptor blockade. Sustained afterload enhancement of EHTs alone is sufficient to induce pathological cardiac remodeling with reduced contractile function and increased glucose consumption. The model will be useful to investigate novel therapeutic approaches in a simple and fast manner.


Assuntos
Cardiomegalia/etiologia , Modelos Biológicos , Miócitos Cardíacos/fisiologia , Engenharia Tecidual , Animais , Animais Recém-Nascidos , Células Cultivadas , Antagonistas dos Receptores de Endotelina , Fibrose , Expressão Gênica , Glicólise , Ratos , Ratos Endogâmicos Lew , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA