Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6685): 884-890, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386742

RESUMO

Much of our understanding of Cenozoic climate is based on the record of δ18O measured in benthic foraminifera. However, this measurement reflects a combined signal of global temperature and sea level, thus preventing a clear understanding of the interactions and feedbacks of the climate system in causing global temperature change. Our new reconstruction of temperature change over the past 4.5 million years includes two phases of long-term cooling, with the second phase of accelerated cooling during the Middle Pleistocene Transition (1.5 to 0.9 million years ago) being accompanied by a transition from dominant 41,000-year low-amplitude periodicity to dominant 100,000-year high-amplitude periodicity. Changes in the rates of long-term cooling and variability are consistent with changes in the carbon cycle driven initially by geologic processes, followed by additional changes in the Southern Ocean carbon cycle.

2.
Sci Data ; 11(1): 68, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216580

RESUMO

Plant macrofossils from packrat (Neotoma spp.) middens provide direct evidence of past vegetation changes in arid regions of North America. Here we describe the newest version (version 5.0) of the U.S. Geological Survey (USGS) North American Packrat Midden Database. The database contains published and contributed data from 3,331 midden samples collected in southwest Canada, the western United States, and northern Mexico, with samples ranging in age from 48 ka to the present. The database includes original midden-sample macrofossil counts and relative-abundance data along with a standardized relative-abundance scheme that makes it easier to compare macrofossil data across midden-sample sites. In addition to the midden-sample data, this version of the midden database includes calibrated radiocarbon (14C) ages for the midden samples and plant functional type (PFT) assignments for the midden taxa. We also provide World Wildlife Fund ecoregion assignments and climate and bioclimate data for each midden-sample site location. The data are provided in tabular (.xlsx), comma-separated values (.csv), and relational database (.mdb) files.


Assuntos
Clima , Fósseis , Plantas , México , América do Norte , Sigmodontinae
3.
Nature ; 554(7690): 92-96, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29388952

RESUMO

Cooling during most of the past two millennia has been widely recognized and has been inferred to be the dominant global temperature trend of the past 11,700 years (the Holocene epoch). However, long-term cooling has been difficult to reconcile with global forcing, and climate models consistently simulate long-term warming. The divergence between simulations and reconstructions emerges primarily for northern mid-latitudes, for which pronounced cooling has been inferred from marine and coastal records using multiple approaches. Here we show that temperatures reconstructed from sub-fossil pollen from 642 sites across North America and Europe closely match simulations, and that long-term warming, not cooling, defined the Holocene until around 2,000 years ago. The reconstructions indicate that evidence of long-term cooling was limited to North Atlantic records. Early Holocene temperatures on the continents were more than two degrees Celsius below those of the past two millennia, consistent with the simulated effects of remnant ice sheets in the climate model Community Climate System Model 3 (CCSM3). CCSM3 simulates increases in 'growing degree days'-a measure of the accumulated warmth above five degrees Celsius per year-of more than 300 kelvin days over the Holocene, consistent with inferences from the pollen data. It also simulates a decrease in mean summer temperatures of more than two degrees Celsius, which correlates with reconstructed marine trends and highlights the potential importance of the different subseasonal sensitivities of the records. Despite the differing trends, pollen- and marine-based reconstructions are correlated at millennial-to-centennial scales, probably in response to ice-sheet and meltwater dynamics, and to stochastic dynamics similar to the temperature variations produced by CCSM3. Although our results depend on a single source of palaeoclimatic data (pollen) and a single climate-model simulation, they reinforce the notion that climate models can adequately simulate climates for periods other than the present-day. They also demonstrate that amplified warming in recent decades increased temperatures above the mean of any century during the past 11,000 years.


Assuntos
Clima , Modelos Teóricos , Temperatura , Europa (Continente) , Fósseis , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História Antiga , Camada de Gelo , América do Norte , Pólen , Estações do Ano , Processos Estocásticos
4.
Geophys Res Lett ; 44(17): 9020-9028, 2017 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-29104328

RESUMO

Climate model simulations uniformly show drier and warmer summers in the Eurasian midcontinent during the mid-Holocene, which is not consistent with paleoenvironmental observations. The simulated climate results from a reduction in the zonal temperature gradient, which weakens westerly flow and reduces moisture flux and precipitation in the midcontinent. As a result, sensible heating is favored over evaporation and latent heating, resulting in substantial surface-driven atmospheric warming. Thus, the discrepancy with the paleoenvironmental evidence arises initially from a problem in the simulated circulation and is exacerbated by feedback from the land surface. This region is also drier and warmer than indicated by observations in the preindustrial control simulations, and this bias arises in the same way: zonal flow and hence moisture flux into the midcontinent are too weak, and feedback from the land surface results in surface-driven warming. These analyses suggest the need to improve those aspects of climate models that affect the strength of westerly circulation.

5.
Sci Adv ; 1(10): e1500715, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26702434

RESUMO

Understanding climatic influences on the rates and mechanisms of landscape erosion is an unresolved problem in Earth science that is important for quantifying soil formation rates, sediment and solute fluxes to oceans, and atmospheric CO2 regulation by silicate weathering. Glaciated landscapes record the erosional legacy of glacial intervals through moraine deposits and U-shaped valleys, whereas more widespread unglaciated hillslopes and rivers lack obvious climate signatures, hampering mechanistic theory for how climate sets fluxes and form. Today, periglacial processes in high-elevation settings promote vigorous bedrock-to-regolith conversion and regolith transport, but the extent to which frost processes shaped vast swaths of low- to moderate-elevation terrain during past climate regimes is not well established. By combining a mechanistic frost weathering model with a regional Last Glacial Maximum (LGM) climate reconstruction derived from a paleo-Earth System Model, paleovegetation data, and a paleoerosion archive, we propose that frost-driven sediment production was pervasive during the LGM in our unglaciated Pacific Northwest study site, coincident with a 2.5 times increase in erosion relative to modern rates. Our findings provide a novel framework to quantify how climate modulates sediment production over glacial-interglacial cycles in mid-latitude unglaciated terrain.

7.
PLoS One ; 10(10): e0138759, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488750

RESUMO

Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.


Assuntos
Mudança Climática , Simulação por Computador , Ecossistema , Modelos Teóricos , Desenvolvimento Vegetal , Plantas , Canadá , Dióxido de Carbono/análise , Monitoramento Ambiental , Noroeste dos Estados Unidos , Dinâmica Populacional
8.
New Phytol ; 204(1): 37-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25039238

RESUMO

Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial-interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia - fossil records, species distribution models and phylogeographic surveys - in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.


Assuntos
Fósseis , Modelos Teóricos , Filogeografia , Plantas , Clima , Fagus/fisiologia , Camada de Gelo , Picea/fisiologia , Pseudotsuga/fisiologia
10.
Proc Natl Acad Sci U S A ; 109(9): E535-43, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22334650

RESUMO

Understanding the causes and consequences of wildfires in forests of the western United States requires integrated information about fire, climate changes, and human activity on multiple temporal scales. We use sedimentary charcoal accumulation rates to construct long-term variations in fire during the past 3,000 y in the American West and compare this record to independent fire-history data from historical records and fire scars. There has been a slight decline in burning over the past 3,000 y, with the lowest levels attained during the 20th century and during the Little Ice Age (LIA, ca. 1400-1700 CE [Common Era]). Prominent peaks in forest fires occurred during the Medieval Climate Anomaly (ca. 950-1250 CE) and during the 1800s. Analysis of climate reconstructions beginning from 500 CE and population data show that temperature and drought predict changes in biomass burning up to the late 1800s CE. Since the late 1800s , human activities and the ecological effects of recent high fire activity caused a large, abrupt decline in burning similar to the LIA fire decline. Consequently, there is now a forest "fire deficit" in the western United States attributable to the combined effects of human activities, ecological, and climate changes. Large fires in the late 20th and 21st century fires have begun to address the fire deficit, but it is continuing to grow.


Assuntos
Incêndios/história , Biomassa , Carvão Vegetal/análise , Mudança Climática/história , Secas , Sedimentos Geológicos/análise , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , História Medieval , Atividades Humanas/história , Atividades Humanas/tendências , Humanos , Sudoeste dos Estados Unidos , Temperatura , Árvores/crescimento & desenvolvimento
11.
Proc Natl Acad Sci U S A ; 109(19): E1134-42, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22331892

RESUMO

Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO(2) and CH(4) to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.


Assuntos
Clima , Aquecimento Global , Camada de Gelo , Temperatura , Atmosfera/análise , Evolução Biológica , Dióxido de Carbono/metabolismo , Ecossistema , Geografia , Metano/metabolismo , Modelos Teóricos , Método de Monte Carlo , Oxigênio/metabolismo , Análise de Componente Principal , Água do Mar , Fatores de Tempo , Movimentos da Água
12.
Science ; 334(6061): 1385-8, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22116027

RESUMO

Assessing the impact of future anthropogenic carbon emissions is currently impeded by uncertainties in our knowledge of equilibrium climate sensitivity to atmospheric carbon dioxide doubling. Previous studies suggest 3 kelvin (K) as the best estimate, 2 to 4.5 K as the 66% probability range, and nonzero probabilities for much higher values, the latter implying a small chance of high-impact climate changes that would be difficult to avoid. Here, combining extensive sea and land surface temperature reconstructions from the Last Glacial Maximum with climate model simulations, we estimate a lower median (2.3 K) and reduced uncertainty (1.7 to 2.6 K as the 66% probability range, which can be widened using alternate assumptions or data subsets). Assuming that paleoclimatic constraints apply to the future, as predicted by our model, these results imply a lower probability of imminent extreme climatic change than previously thought.

13.
Trends Ecol Evol ; 26(5): 249-59, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21474198

RESUMO

Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Modelos Biológicos , Ecossistema , Variação Genética , Especificidade da Espécie
14.
Ecology ; 90(3): 588-97, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19341131

RESUMO

Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Efeito Estufa , Modelos Biológicos , Algoritmos , Anfíbios/fisiologia , Animais , Aves/fisiologia , Demografia , Mamíferos/fisiologia , Densidade Demográfica , Dinâmica Populacional , Valor Preditivo dos Testes , Especificidade da Espécie
15.
Environ Manage ; 34 Suppl 1: S125-48, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15883868

RESUMO

Ecoregion classification systems are increasingly used for policy and management decisions, particularly among conservation and natural resource managers. A number of ecoregion classification systems are currently available, with each system defining ecoregions using different classification methods and different types of data. As a result, each classification system describes a unique set of ecoregions. To help potential users choose the most appropriate ecoregion system for their particular application, we used three latitudinal transects across North America to compare the boundaries and environmental characteristics of three ecoregion classification systems [Küchler, World Wildlife Fund (WWF), and Bailey]. A variety of variables were used to evaluate the three systems, including woody plant species richness, normalized difference in vegetation index (NDVI), and bioclimatic variables (e.g., mean temperature of the coldest month) along each transect. Our results are dominated by geographic patterns in temperature, which are generally aligned north-south, and in moisture, which are generally aligned east-west. In the west, the dramatic changes in physiography, climate, and vegetation impose stronger controls on ecoregion boundaries than in the east. The Küchler system has the greatest number of ecoregions on all three transects, but does not necessarily have the highest degree of internal consistency within its ecoregions with regard to the bioclimatic and species richness data. In general, the WWF system appears to track climatic and floristic variables the best of the three systems, but not in all regions on all transects.


Assuntos
Classificação/métodos , Clima , Ecossistema , Geografia , Plantas , Ecologia , Sistemas de Informação Geográfica , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...