Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2311961120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096411

RESUMO

Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genes GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles of GT1 and VRS1 homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize, gt1; vrs1-like1 (vrl1) mutants have derepressed growth of floral organs. In addition, gt1; vrl1 mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium, Bdgt1; Bdvrl1 mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles for GT1 and VRS1 homologs in growth suppression over ca. 59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maize GT1 can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despite ca. 160 My of evolution separating the grasses and arabidopsis. Thus, GT1 and VRS1 maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fenótipo , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Mol Biol Evol ; 40(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37787619

RESUMO

The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Leucina/genética , Domínios Proteicos , Proteínas Quinases/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Tirosina Quinases/genética , Evolução Molecular , Filogenia
3.
Annu Rev Plant Biol ; 74: 727-750, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36413578

RESUMO

There is intense interest in using genome editing technologies to domesticate wild plants, or accelerate the improvement of weakly domesticated crops, in de novo domestication. Here, we discuss promising genetic strategies, with a focus on plant development. Importantly, genome editing releases us from dependence on random mutagenesis or intraspecific diversity, allowing us to draw solutions more broadly from diversity. However, sparse understanding of the complex genetics of diversity limits innovation. Beyond genetics, we urge the ethical use of indigenous knowledge, indigenous plants, and ethnobotany. De novo domestication still requires conventional breeding by phenotypic selection, especially in the development of crops for diverse environments and cultures. Indeed, uniting genome editing with selective breeding could facilitate faster and better outcomes than either technology alone. Domestication is complex and incompletely understood, involving changes to many aspects of plant biology and human culture. Success in de novo domestication requires careful attention to history and collaboration across traditional boundaries.


Assuntos
Domesticação , Edição de Genes , Humanos , Melhoramento Vegetal , Produtos Agrícolas/genética , Etnobotânica
4.
Cell ; 184(7): 1724-1739.e16, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33667348

RESUMO

Divergence of gene function is a hallmark of evolution, but assessing functional divergence over deep time is not trivial. The few alleles available for cross-species studies often fail to expose the entire functional spectrum of genes, potentially obscuring deeply conserved pleiotropic roles. Here, we explore the functional divergence of WUSCHEL HOMEOBOX9 (WOX9), suggested to have species-specific roles in embryo and inflorescence development. Using a cis-regulatory editing drive system, we generate a comprehensive allelic series in tomato, which revealed hidden pleiotropic roles for WOX9. Analysis of accessible chromatin and conserved cis-regulatory sequences identifies the regions responsible for this pleiotropic activity, the functions of which are conserved in groundcherry, a tomato relative. Mimicking these alleles in Arabidopsis, distantly related to tomato and groundcherry, reveals new inflorescence phenotypes, exposing a deeply conserved pleiotropy. We suggest that targeted cis-regulatory mutations can uncover conserved gene functions and reduce undesirable effects in crop improvement.


Assuntos
Genes de Plantas , Pleiotropia Genética/genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Cromatina/metabolismo , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Solanum lycopersicum/genética , Mutagênese , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Solanaceae/genética , Solanaceae/crescimento & desenvolvimento
5.
Nat Genet ; 51(5): 786-792, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988512

RESUMO

Precise control of plant stem cell proliferation is necessary for the continuous and reproducible development of plant organs1,2. The peptide ligand CLAVATA3 (CLV3) and its receptor protein kinase CLAVATA1 (CLV1) maintain stem cell homeostasis within a deeply conserved negative feedback circuit1,2. In Arabidopsis, CLV1 paralogs also contribute to homeostasis, by compensating for the loss of CLV1 through transcriptional upregulation3. Here, we show that compensation4,5 operates in diverse lineages for both ligands and receptors, but while the core CLV signaling module is conserved, compensation mechanisms have diversified. Transcriptional compensation between ligand paralogs operates in tomato, facilitated by an ancient gene duplication that impacted the domestication of fruit size. In contrast, we found little evidence for transcriptional compensation between ligands in Arabidopsis and maize, and receptor compensation differs between tomato and Arabidopsis. Our findings show that compensation among ligand and receptor paralogs is critical for stem cell homeostasis, but that diverse genetic mechanisms buffer conserved developmental programs.


Assuntos
Meristema/citologia , Meristema/genética , Desenvolvimento Vegetal/genética , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ligantes , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Modelos Genéticos , Mutação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Células-Tronco/citologia , Zea mays/citologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento
6.
Elife ; 72018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543153

RESUMO

Meristems contain groups of indeterminate stem cells, which are maintained by a feedback loop between CLAVATA (CLV) and WUSCHEL (WUS) signaling. CLV signaling involves the secretion of the CLV3 peptide and its perception by a number of Leucine-Rich-Repeat (LRR) receptors, including the receptor-like kinase CLV1 and the receptor-like protein CLV2 coupled with the CORYNE (CRN) pseudokinase. CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by CLV3 and several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands. Nevertheless, how signaling specificity is achieved remains unknown. Here we show that FEA2 transmits signaling from two distinct CLE peptides, the maize CLV3 ortholog ZmCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) through two different candidate downstream effectors, the alpha subunit of the maize heterotrimeric G protein COMPACT PLANT2 (CT2), and ZmCRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Meristema/genética , Proteínas Serina-Treonina Quinases/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Meristema/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Transdução de Sinais/genética , Zea mays/crescimento & desenvolvimento
7.
J Cell Biol ; 217(3): 945-957, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29374070

RESUMO

Exocytosis, facilitated by the exocyst, is fundamentally important for remodeling cell walls and membranes. Here, we analyzed For1F, a novel gene that encodes a fusion of an exocyst subunit (Sec10) and an actin nucleation factor (formin). We showed that the fusion occurred early in moss evolution and has been retained for more than 170 million years. In Physcomitrella patens, For1F is essential, and the expressed protein is a fusion of Sec10 and formin. Reduction of For1F or actin filaments inhibits exocytosis, and For1F dynamically associates with Sec6, another exocyst subunit, in an actin-dependent manner. Complementation experiments demonstrate that constitutive expression of either half of the gene or the paralogous Sec10b rescues loss of For1F, suggesting that fusion of the two domains is not essential, consistent with findings in yeast, where formin and the exocyst are linked noncovalently. Although not essential, the fusion may have had selective advantages and provides a unique opportunity to probe actin regulation of exocytosis.


Assuntos
Actinas/metabolismo , Bryopsida/metabolismo , Evolução Molecular , Exocitose/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Actinas/genética , Bryopsida/genética , Proteínas de Plantas/genética , Proteínas de Transporte Vesicular/genética
8.
Integr Comp Biol ; 57(6): 1312-1321, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992040

RESUMO

Flowers display fantastic morphological diversity. Despite extreme variability in form, floral organ identity is specified by a core set of deeply conserved proteins-the floral MADS-box transcription factors. This indicates that while core gene function has been maintained, MADS-box transcription factors have evolved to regulate different downstream genes. Thus, the evolution of gene regulation downstream of the MADS-box transcription factors is likely central to the evolution of floral form. Gene regulation is determined by the combination of transcriptional regulators present at a particular cis-regulatory element at a particular time. Therefore, the interactions between transcription factors can be of profound importance in determining patterns of gene regulation. Here, after a short primer on flowers and floral morphology, I discuss the centrality of protein-protein interactions to MADS-box transcription factor function, and review the evidence that the evolution of MADS-box protein-protein interactions is a key driver in the evolution of gene regulation downstream of the MADS-box genes.


Assuntos
Evolução Molecular , Flores/genética , Regulação da Expressão Gênica de Plantas , Morfogênese , Desenvolvimento Vegetal/genética , Fatores de Transcrição/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Plantas , Fatores de Transcrição/metabolismo
9.
Cell ; 171(2): 470-480.e8, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28919077

RESUMO

Major advances in crop yields are needed in the coming decades. However, plant breeding is currently limited by incremental improvements in quantitative traits that often rely on laborious selection of rare naturally occurring mutations in gene-regulatory regions. Here, we demonstrate that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding. We devised a simple genetic scheme, which exploits trans-generational heritability of Cas9 activity in heterozygous loss-of-function mutant backgrounds, to rapidly evaluate the phenotypic impact of numerous promoter variants for genes regulating three major productivity traits in tomato: fruit size, inflorescence branching, and plant architecture. Our approach allows immediate selection and fixation of novel alleles in transgene-free plants and fine manipulation of yield components. Beyond a platform to enhance variation for diverse agricultural traits, our findings provide a foundation for dissecting complex relationships between gene-regulatory changes and control of quantitative traits.


Assuntos
Produtos Agrícolas/genética , Edição de Genes , Genoma de Planta , Sistemas CRISPR-Cas , Regiões Promotoras Genéticas , Locos de Características Quantitativas
10.
Genetics ; 204(4): 1573-1585, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27729422

RESUMO

The effects of an allelic substitution at a gene often depend critically on genetic background, i.e., the genotypes at other genes in the genome. During the domestication of maize from its wild ancestor (teosinte), an allelic substitution at teosinte branched (tb1) caused changes in both plant and ear architecture. The effects of tb1 on phenotype were shown to depend on multiple background loci, including one called enhancer of tb1.2 (etb1.2). We mapped etb1.2 to a YABBY class transcription factor (ZmYAB2.1) and showed that the maize alleles of ZmYAB2.1 are either expressed at a lower level than teosinte alleles or disrupted by insertions in the sequences. tb1 and etb1.2 interact epistatically to control the length of internodes within the maize ear, which affects how densely the kernels are packed on the ear. The interaction effect is also observed at the level of gene expression, with tb1 acting as a repressor of ZmYAB2.1 expression. Curiously, ZmYAB2.1 was previously identified as a candidate gene for another domestication trait in maize, nonshattering ears. Consistent with this proposed role, ZmYAB2.1 is expressed in a narrow band of cells in immature ears that appears to represent a vestigial abscission (shattering) zone. Expression in this band of cells may also underlie the effect on internode elongation. The identification of ZmYAB2.1 as a background factor interacting with tb1 is a first step toward a gene-level understanding of how tb1 and the background within which it works evolved in concert during maize domestication.


Assuntos
Epistasia Genética , Patrimônio Genético , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Zea mays/genética , Alelos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
11.
Plant Cell ; 27(11): 3081-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26518212

RESUMO

In monocots and eudicots, B class function specifies second and third whorl floral organ identity as described in the classic ABCE model. Grass B class APETALA3/DEFICIENS orthologs have been functionally characterized; here, we describe the positional cloning and characterization of a maize (Zea mays) PISTILLATA/GLOBOSA ortholog Zea mays mads16 (Zmm16)/sterile tassel silky ear1 (sts1). We show that, similar to many eudicots, all the maize B class proteins bind DNA as obligate heterodimers and positively regulate their own expression. However, sts1 mutants have novel phenotypes that provide insight into two derived aspects of maize flower development: carpel abortion and floral asymmetry. Specifically, we show that carpel abortion acts downstream of organ identity and requires the growth-promoting factor grassy tillers1 and that the maize B class genes are expressed asymmetrically, likely in response to zygomorphy of grass floral primordia. Further investigation reveals that floral phyllotactic patterning is also zygomorphic, suggesting significant mechanistic differences with the well-characterized models of floral polarity. These unexpected results show that despite extensive study of B class gene functions in diverse flowering plants, novel insights can be gained from careful investigation of homeotic mutants outside the core eudicot model species.


Assuntos
Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Clonagem Molecular , DNA de Plantas/metabolismo , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genes de Plantas , Mutação/genética , Fenótipo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Interferência de RNA , Homologia de Sequência de Aminoácidos , Zea mays/genética , Zea mays/ultraestrutura
12.
Front Plant Sci ; 5: 508, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25352850

RESUMO

Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology.

13.
Front Plant Sci ; 4: 382, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24124420

RESUMO

Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism's phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection's source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein-protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution.

14.
Am J Bot ; 98(2): 227-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21613112

RESUMO

PREMISE OF THE STUDY: Floral symmetry is a trait of key importance when considering floral diversification because it is thought to play a significant role in plant-pollinator interactions. The CYCLOIDEA/TEOSINTE BRANCHED1 (CYC/TB1)-like genes have been implicated in the development and evolution of floral symmetry in numerous lineages. We thus chose to investigate a possible role for these genes in the evolution of floral symmetry within petaloid monocots, using the order Zingiberales as a model system. In the Zingiberales, evolutionary shifts in symmetry have occurred in all floral whorls, making the order ideal for studying the evolution of this ecologically significant trait. METHODS: We analyzed TB1-like (TBL) genes from taxa spanning the order in a phylogenetic context. Using RNA in situ hybridization, we examined the expression of two TBL genes in Costus spicatus (Costaceae) and Heliconia stricta (Heliconiaceae), taxa with divergent floral symmetry patterns. KEY RESULTS: We identified Zingiberales-specific gene duplications as well as a duplication in the TBL gene lineage that predates the diversification of commelinid monocots. Shifts in TBL gene expression were associated with evolutionary shifts in floral symmetry and stamen abortion. ZinTBL1a expression was found in the posterior (adaxial) staminode of H. stricta and in the abaxial staminodial labellum of C. spicatus. ZinTBL2 expression was strongest in the anterior (abaxial) sepals of H. stricta and in the adaxial fertile stamen of C. spicatus. CONCLUSIONS: This study adds to the growing body of evidence that CYC/TB1-like genes have been repeatedly recruited throughout the course of evolution to generate bilateral floral symmetry (zygomorphy).


Assuntos
Evolução Biológica , Flores/anatomia & histologia , Expressão Gênica , Genes de Plantas , Proteínas de Plantas/metabolismo , Polinização/genética , Zingiberales/metabolismo , Costus/genética , Costus/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Duplicação Gênica , Heliconiaceae/genética , Heliconiaceae/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zingiberales/genética
15.
New Phytol ; 187(2): 521-541, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20456055

RESUMO

SUMMARY: *The MADS box transcription factor family has long been identified as an important contributor to the control of floral development. It is often hypothesized that the evolution of floral development across angiosperms and within specific lineages may occur as a result of duplication, functional diversification, and changes in regulation of MADS box genes. Here we examine the role of Globosa (GLO)-like genes, members of the B-class MADS box gene lineage, in the evolution of floral development within the monocot order Zingiberales. *We assessed changes in perianth and stamen whorl morphology in a phylogenetic framework. We identified GLO homologs (ZinGLO1-4) from 50 Zingiberales species and investigated the evolution of this gene lineage. Expression of two GLO homologs was assessed in Costus spicatus and Musa basjoo. *Based on the phylogenetic data and expression results, we propose several family-specific losses and gains of GLO homologs that appear to be associated with key morphological changes. The GLO-like gene lineage has diversified concomitant with the evolution of the dimorphic perianth and the staminodial labellum. *Duplications and expression divergence within the GLO-like gene lineage may have played a role in floral diversification in the Zingiberales.


Assuntos
Evolução Molecular , Flores/anatomia & histologia , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Zingiberales/genética , Teorema de Bayes , Commelina/genética , Flores/citologia , Flores/genética , Dosagem de Genes/genética , Modelos Genéticos , Nucleotídeos/genética , Filogenia , Homologia de Sequência do Ácido Nucleico , Zingiberales/anatomia & histologia
16.
Am J Bot ; 96(3): 580-93, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21628214

RESUMO

We present new comparative data on early floral development of Heliconia latispatha, an ecologically and horticulturally important tropical plant within the order Zingiberales. Modification of the six members of two androecial whorls is characteristic of Zingiberales, with a reduction in number of fertile stamen from five or six in the banana families (Musaceae, Strelitziaceae, Lowiaceae, and Heliconiaceae) to one in Costaceae and Zingiberaceae and one-half in Marantaceae and Cannaceae. The remaining five infertile stamens in these later four families (the ginger families) are petaloid, and in Costaceae and Zingiberaceae fuse together to form a novel structure, the labellum. Within this developmental sequence, Heliconiaceae share with the ginger families the possession of an antisepalous staminode, a synapomorphy that has been used to place Heliconiaceae as sister to the ginger family clade. Here, we use epi-illumination light microscopy and reconstruction of serial sections to investigate the ontogeny of the Heliconia flower with emphasis on the ontogeny of the staminode. We compare floral development in Heliconia with that previously described for other species of Zingiberales. A comparison of floral structure and development across Zingiberales is presented to better understand the evolution of the flower in this charismatic group of tropical plants.

17.
Dev Genes Evol ; 218(5): 273-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18299889

RESUMO

Evolutionary developmental biology often combines methods for examining morphology (e.g., scanning electron microscopy, SEM) with analyses of gene expression (e.g., RNA in situ hybridization). Due to differences in tissue preparation for SEM and gene expression analyses, the same specimen cannot be used for both sets of techniques. To aid in the understanding of morphological variation, it would be particularly useful to have a high-magnification image of the very same sample in which gene expression is subsequently analyzed. To address this need, we developed a method that couples extended depth of field (EDF) epi-illumination microscopy to in situ hybridization in a sequential format, enabling both surface microscopy and gene expression analyses to be carried out on the same specimen. We first created a digital image of inflorescence apices using epi-illumination microscopy and commercially available EDF software. We then performed RNA in situ hybridizations on photographed apices to assess the expression of two developmental genes: Knotted1 (Kn1) in Zea mays (Poaceae) and a PISTILLATA (PI) homolog in Musa basjoo (Musaceae). We demonstrate that expression signal is neither altered nor reduced in the imaged apices as compared with the unphotographed controls. The demonstrated method reduces the amount of sample material necessary for developmental research, and enables individual floral development to be placed in the context of the entire inflorescence. While the technique presented here is particularly relevant to floral developmental biology, it is applicable to any research where observation and description of external features can be fruitfully linked with analyses of gene expression.


Assuntos
Evolução Biológica , Hibridização In Situ/métodos , Microscopia/métodos , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Microscopia/instrumentação , Estimulação Luminosa , Proteínas de Plantas/metabolismo , Zea mays/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...