Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L149-L163, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084408

RESUMO

With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.


Assuntos
Asma , Receptores Nicotínicos , Transtornos Respiratórios , Humanos , Receptores Nicotínicos/metabolismo , Nicotina/efeitos adversos , Nicotina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Pulmão/metabolismo , Asma/metabolismo , Transtornos Respiratórios/metabolismo , Produtos do Tabaco
2.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L52-L64, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987780

RESUMO

Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.


Assuntos
Asma , Sulfeto de Hidrogênio , Hiperóxia , Humanos , Gravidez , Criança , Animais , Feminino , Camundongos , Masculino , Hiperóxia/metabolismo , Animais Recém-Nascidos , Sulfeto de Hidrogênio/farmacologia , Antioxidantes/farmacologia , Pulmão/metabolismo , Asma/patologia
3.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L803-L818, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933473

RESUMO

Exposure to cigarette smoke and e-cigarettes, with nicotine as the active constituent, contributes to increased health risks associated with asthma. Nicotine exerts its functional activity via nicotinic acetylcholine receptors (nAChRs), and the alpha7 subtype (α7nAChR) has recently been shown to adversely affect airway dynamics. The mechanisms of α7nAChR action in airways, particularly in the context of airway smooth muscle (ASM), a key cell type in asthma, are still under investigation. Mitochondria have garnered increasing interest for their role in regulating airway tone and adaptations to cellular stress. Here mitochondrial dynamics such as fusion versus fission, and mitochondrial Ca2+ ([Ca2+]m), play an important role in mitochondrial homeostasis. There is currently no information on effects and mechanisms by which nicotine regulates mitochondrial structure and function in ASM in the context of asthma. We hypothesized that nicotine disrupts mitochondrial morphology, fission-fusion balance, and [Ca2+]m regulation, with altered mitochondrial respiration and bioenergetics in the context of asthmatic ASM. Using human ASM (hASM) cells from nonasthmatics, asthmatics, and smokers, we examined the effects of nicotine on mitochondrial dynamics and [Ca2+]m. Fluorescence [Ca2+]m imaging of hASM cells with rhod-2 showed robust responses to 10 µM nicotine, particularly in asthmatics and smokers. In both asthmatics and smokers, nicotine increased the expression of fission proteins while decreasing fusion proteins. Seahorse analysis showed blunted oxidative phosphorylation parameters in response to nicotine in these groups. α7nAChR siRNA blunted nicotine effects, rescuing [Ca2+]m, changes in mitochondrial structural proteins, and mitochondrial dysfunction. These data highlight mitochondria as a target of nicotine effects on ASM, where mitochondrial disruption and impaired buffering could permit downstream effects of nicotine in the context of asthma.NEW & NOTEWORTHY Asthma is a major healthcare burden, which is further exacerbated by smoking. Recognizing the smoking risk of asthma, understanding the effects of nicotine on asthmatic airways becomes critical. Surprisingly, the mechanisms of nicotine action, even in normal and especially asthmatic airways, are understudied. Accordingly, the goal of this research is to investigate how nicotine influences asthmatic airways in terms of mitochondrial structure and function, via the a7nAChR.


Assuntos
Asma , Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Nicotina/farmacologia , Nicotina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Miócitos de Músculo Liso/metabolismo , Asma/metabolismo , Mitocôndrias/metabolismo
4.
Front Med (Lausanne) ; 10: 1214108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404808

RESUMO

Chronic airway diseases, such as wheezing and asthma, remain significant sources of morbidity and mortality in the pediatric population. This is especially true for preterm infants who are impacted both by immature pulmonary development as well as disproportionate exposure to perinatal insults that may increase the risk of developing airway disease. Chronic pediatric airway disease is characterized by alterations in airway structure (remodeling) and function (increased airway hyperresponsiveness), similar to adult asthma. One of the most common perinatal risk factors for development of airway disease is respiratory support in the form of supplemental oxygen, mechanical ventilation, and/or CPAP. While clinical practice currently seeks to minimize oxygen exposure to decrease the risk of bronchopulmonary dysplasia (BPD), there is mounting evidence that lower levels of oxygen may carry risk for development of chronic airway, rather than alveolar disease. In addition, stretch exposure due to mechanical ventilation or CPAP may also play a role in development of chronic airway disease. Here, we summarize the current knowledge of the impact of perinatal oxygen and mechanical respiratory support on the development of chronic pediatric lung disease, with particular focus on pediatric airway disease. We further highlight mechanisms that could be explored as potential targets for novel therapies in the pediatric population.

5.
Am J Physiol Lung Cell Mol Physiol ; 323(6): L685-L697, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223640

RESUMO

Cellular senescence is emerging as a driver of idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease with limited effective therapies. The senescence-associated secretory phenotype (SASP), involving the release of inflammatory cytokines and profibrotic growth factors by senescent cells, is thought to be a product of multiple cell types in IPF, including lung fibroblasts. NF-κB is a master regulator of the SASP, and its activity depends on the phosphorylation of p65/RelA. The purpose of this study was to assess the role of Pim-1 kinase as a driver of NF-κB-induced production of inflammatory cytokines from low-passage IPF fibroblast cultures displaying markers of senescence. Our results demonstrate that Pim-1 kinase phosphorylates p65/RelA, activating NF-κB activity and enhancing IL-6 production, which in turn amplifies the expression of PIM1, generating a positive feedback loop. In addition, targeting Pim-1 kinase with a small molecule inhibitor dramatically inhibited the expression of a broad array of cytokines and chemokines in IPF-derived fibroblasts. Furthermore, we provide evidence that Pim-1 overexpression in low-passage human lung fibroblasts is sufficient to drive premature senescence, in vitro. These findings highlight the therapeutic potential of targeting Pim-1 kinase to reprogram the secretome of senescent fibroblasts and halt IPF progression.


Assuntos
Fibrose Pulmonar Idiopática , Pneumonia , Humanos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/farmacologia , NF-kappa B/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Senescência Celular , Pulmão/metabolismo , Pneumonia/metabolismo , Citocinas/metabolismo
6.
Antioxidants (Basel) ; 10(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34573032

RESUMO

Premature infants are frequently and intermittently administered supplemental oxygen during hypoxic episodes, resulting in cycles of intermittent hypoxia and hyperoxia. The relatively hypoxic in utero environment is important for lung development while hyperoxia during the neonatal period is recognized as detrimental towards the development of diseases such as bronchopulmonary dysplasia and bronchial asthma. Understanding early mechanisms that link hypoxic, hyperoxic, and intermittent hypoxic-hyperoxic exposures to altered airway structure and function are key to developing advanced therapeutic approaches in the clinic. Changes in oxygen availability can be detrimental to cellular function and contribute to oxidative damage. Here, we sought to determine the effect of oxygen on mitochondria in human fetal airway smooth muscle cells exposed to either 5% O2, 21% O2, 40% O2, or cycles of 5% and 40% O2 (intermittent hypoxia-hyperoxia). Reactive oxygen species production, altered mitochondrial morphology, and changes in mitochondrial respiration were assessed in the context of the antioxidant N-acetylcysteine. Our findings show developing airway smooth muscle is differentially responsive to hypoxic, hyperoxic, or intermittent hypoxic-hyperoxic exposure in terms of mitochondrial structure and function. Cycling O2 decreased mitochondrial branching and branch length similar to hypoxia and hyperoxia in the presence of antioxidants. Additionally, hypoxia decreased overall mitochondrial respiration while the addition of antioxidants increased respiration in normoxic and O2-cycling conditions. These studies show the necessity of balancing oxidative damage and antioxidant defense systems in the developing airway.

7.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L280-L286, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34037474

RESUMO

Differentiation of human bronchial epithelial cells (HBEs) in air-liquid interface (ALI) cultures recapitulates organotypic modeling of the in vivo environment. Although ALI cultures are invaluable for studying the respiratory epithelial barrier, loss-of-function studies are limited by potentially cytotoxic reagents in classical transfection methods, the length of the differentiation protocol, and the number of primary epithelial cell passages. Here, we present the efficacy and use of a simple method for small interfering RNA (siRNA) transfection of normal HBEs (NHBEs) in ALI cultures that does not require potentially cytotoxic transfection reagents and does not detrimentally alter the physiology or morphology of NHBEs during the differentiation process. This transfection protocol introduces a reproducible and efficient method for loss-of-function studies in HBE ALI cultures that can be leveraged for modeling the respiratory system and airway diseases.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Regulação da Expressão Gênica , RNA Interferente Pequeno/genética , Mucosa Respiratória/citologia , Transfecção/métodos , Diferenciação Celular , Células Cultivadas , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Mucosa Respiratória/metabolismo
8.
Front Physiol ; 12: 585895, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790802

RESUMO

Supplemental O2 (hyperoxia), necessary for maintenance of oxygenation in premature infants, contributes to neonatal and pediatric airway diseases including asthma. Airway smooth muscle (ASM) is a key resident cell type, responding to hyperoxia with increased contractility and remodeling [proliferation, extracellular matrix (ECM) production], making the mechanisms underlying hyperoxia effects on ASM significant. Recognizing that fetal lungs experience a higher extracellular Ca2+ ([Ca2+]o) environment, we previously reported that the calcium sensing receptor (CaSR) is expressed and functional in human fetal ASM (fASM). In this study, using fASM cells from 18 to 22 week human fetal lungs, we tested the hypothesis that CaSR contributes to hyperoxia effects on developing ASM. Moderate hyperoxia (50% O2) increased fASM CaSR expression. Fluorescence [Ca2+]i imaging showed hyperoxia increased [Ca2+]i responses to histamine that was more sensitive to altered [Ca2+]o, and promoted IP3 induced intracellular Ca2+ release and store-operated Ca2+ entry: effects blunted by the calcilytic NPS2143. Hyperoxia did not significantly increase mitochondrial calcium which was regulated by CaSR irrespective of oxygen levels. Separately, fASM cell proliferation and ECM deposition (collagens but not fibronectin) showed sensitivity to [Ca2+]o that was enhanced by hyperoxia, but blunted by NPS2143. Effects of hyperoxia involved p42/44 ERK via CaSR and HIF1α. These results demonstrate functional CaSR in developing ASM that contributes to hyperoxia-induced contractility and remodeling that may be relevant to perinatal airway disease.

9.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L451-L466, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404366

RESUMO

Supplemental O2 (hyperoxia) is necessary for preterm infant survival but is associated with development of bronchial airway hyperreactivity and childhood asthma. Understanding early mechanisms that link hyperoxia to altered airway structure and function are key to developing advanced therapies. We previously showed that even moderate hyperoxia (50% O2) enhances intracellular calcium ([Ca2+]i) and proliferation of human fetal airway smooth muscle (fASM), thereby facilitating bronchoconstriction and remodeling. Here, we introduce cellular clock biology as a novel mechanism linking early oxygen exposure to airway biology. Peripheral, intracellular clocks are a network of transcription-translation feedback loops that produce circadian oscillations with downstream targets highly relevant to airway function and asthma. Premature infants suffer circadian disruption whereas entrainment strategies improve outcomes, highlighting the need to understand relationships between clocks and developing airways. We hypothesized that hyperoxia impacts clock function in fASM and that the clock can be leveraged to attenuate deleterious effects of O2 on the developing airway. We report that human fASM express core clock machinery (PER1, PER2, CRY1, ARNTL/BMAL1, CLOCK) that is responsive to dexamethasone (Dex) and altered by O2. Disruption of the clock via siRNA-mediated PER1 or ARNTL knockdown alters store-operated calcium entry (SOCE) and [Ca2+]i response to histamine in hyperoxia. Effects of O2 on [Ca2+]i are rescued by driving expression of clock proteins, via effects on the Ca2+ channels IP3R and Orai1. These data reveal a functional fASM clock that modulates [Ca2+]i regulation, particularly in hyperoxia. Harnessing clock biology may be a novel therapeutic consideration for neonatal airway diseases following prematurity.


Assuntos
Brônquios/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Cálcio/metabolismo , Relógios Circadianos , Hiperóxia/fisiopatologia , Músculo Liso/metabolismo , Oxigênio/metabolismo , Animais , Brônquios/patologia , Hiper-Reatividade Brônquica/patologia , Proliferação de Células , Células Cultivadas , Feminino , Feto/metabolismo , Feto/patologia , Humanos , Recém-Nascido , Masculino , Camundongos Endogâmicos C57BL , Músculo Liso/patologia
10.
Expert Rev Respir Med ; 15(3): 351-372, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33086886

RESUMO

INTRODUCTION: Airway dysfunction leading to chronic lung disease is a common consequence of premature birth and mechanisms responsible for early and progressive airway remodeling are not completely understood. Current therapeutic options are only partially effective in reducing the burden of neonatal airway disease and premature decline of lung function. Gasotransmitter hydrogen sulfide (H2S) has been recently recognized for its therapeutic potential in lung diseases. AREAS COVERED: Contradictory to its well-known toxicity at high concentrations, H2S has been characterized to have anti-inflammatory, antioxidant, and antiapoptotic properties at physiological concentrations. In the respiratory system, endogenous H2S production participates in late lung development and exogenous H2S administration has a protective role in a variety of diseases such as acute lung injury and chronic pulmonary hypertension and fibrosis. Literature searches performed using NCBI PubMed without publication date limitations were used to construct this review, which highlights the dichotomous role of H2S in the lung, and explores its promising beneficial effects in lung diseases. EXPERT OPINION: The emerging role of H2S in pathways involved in chronic lung disease of prematurity along with its recent use in animal models of BPD highlight H2S as a potential novel candidate in protecting lung function following preterm birth.


Assuntos
Sulfeto de Hidrogênio , Pneumopatias , Nascimento Prematuro , Transtornos Respiratórios , Animais , Feminino , Humanos , Recém-Nascido , Pulmão , Gravidez
11.
FASEB J ; 34(9): 12991-13004, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777143

RESUMO

Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.


Assuntos
Cálcio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Músculo Liso/embriologia , Miócitos de Músculo Liso/metabolismo , Oxigênio/metabolismo , Feto , Humanos , Hiperóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro/metabolismo , Miócitos de Músculo Liso/citologia , Sistema Respiratório/embriologia
13.
J Clin Invest ; 130(1): 39-50, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31895049

RESUMO

The discovery of peripheral intracellular clocks revealed circadian oscillations of clock genes and their targets in all cell types, including those in the lung, sparking exploration of clocks in lung disease pathophysiology. While the focus has been on the role of these clocks in adult airway diseases, clock biology is also likely to be important in perinatal lung development, where it has received far less attention. Historically, fetal circadian rhythms have been considered irrelevant owing to lack of external light exposure, but more recent insights into peripheral clock biology raise questions of clock emergence, its concordance with tissue-specific structure/function, the interdependence of clock synchrony and functionality in perinatal lung development, and the possibility of lung clocks in priming the fetus for postnatal life. Understanding the perinatal molecular clock may unravel mechanistic targets for chronic airway disease across the lifespan. With current research providing more questions than answers, it is about time to investigate clocks in the developing lung.


Assuntos
Relógios Circadianos/fisiologia , Pulmão/embriologia , Animais , Desenvolvimento Fetal , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , NF-kappa B/fisiologia , Somitos/fisiologia , Núcleo Supraquiasmático/fisiologia
14.
Cell Rep ; 28(6): 1471-1484.e11, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390562

RESUMO

Consistent daylight oscillations and abundant oxygen availability are fundamental to human health. Here, we investigate the intersection between light-sensing (Period 2 [PER2]) and oxygen-sensing (hypoxia-inducible factor [HIF1A]) pathways in cellular adaptation to myocardial ischemia. We demonstrate that intense light is cardioprotective via circadian PER2 amplitude enhancement, mimicking hypoxia-elicited adenosine- and HIF1A-metabolic adaptation to myocardial ischemia under normoxic conditions. Whole-genome array from intense light-exposed wild-type or Per2-/- mice and myocardial ischemia in endothelial-specific PER2-deficient mice uncover a critical role for intense light in maintaining endothelial barrier function via light-enhanced HIF1A transcription. A proteomics screen in human endothelia reveals a dominant role for PER2 in metabolic reprogramming to hypoxia via mitochondrial translocation, tricarboxylic acid (TCA) cycle enzyme activity regulation, and HIF1A transcriptional adaption to hypoxia. Translational investigation of intense light in human subjects identifies similar PER2 mechanisms, implicating the use of intense light for the treatment of cardiovascular disease.


Assuntos
Relógios Circadianos , Endotélio Vascular/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Isquemia Miocárdica/terapia , Fototerapia , Transcrição Gênica/efeitos da radiação , Adulto , Animais , Hipóxia Celular , Linhagem Celular , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/efeitos da radiação
16.
Exp Cell Res ; 330(1): 178-85, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25102378

RESUMO

Mouse embryonic stem cells (ESCs) can be transfected by electroporation, liposomal reagents, and viral transduction methods. The cationic polymer polyethylenimine (PEI) has been shown to transfect a variety of differentiated mammalian cell types, including mouse ESCs, but existing methods require the use of additional equipment that is not readily accessible to most labs. Here we describe conditions that permit for the efficient transfection of mouse ESCs with low cytotoxicity and without the need for specialized equipment. Our goal was to devise a protocol for the PEI-mediated transfection of mouse ESCs that was comparable in ease to commercial transfection reagents. For these studies, we compared PEI transfection efficiency and cytotoxicity to a well-known liposomal transfection reagent, Lipofectamine2000(™) (LF2K), using fluorescence microscopy, flow cytometry, cell viability assays, and Western blotting. We provide evidence that PEI transfection of mouse ESCs compares favorably to LF2K. Our optimized protocol for efficient transfection of mouse ESCs with PEI is detailed in this report.


Assuntos
Células-Tronco Embrionárias/metabolismo , Polietilenoimina/farmacologia , Transfecção/métodos , Animais , Células-Tronco Embrionárias/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-25165462

RESUMO

Glycogen synthase kinase-3 (Gsk-3) activity is an important regulator of numerous signal transduction pathways. Gsk-3 activity is the sum of two largely redundant proteins, Gsk-3α and Gsk-3ß, and in general, Gsk-3 is a negative regulator of cellular signaling. Genetic deletion of both Gsk-3α and Gsk-3ß in mouse embryonic stem cells (ESCs) has previously been shown to lead to the constitutive activation of the Wnt/ß-catenin signaling pathway. However, in addition to Wnt signaling, all Gsk-3-regulated pathways, such as insulin signaling, are also affected simultaneously in Gsk-3α(-) (/) (-); Gsk-3ß(-) (/) (-)ESCs. In an effort to better understand how specific signaling pathways contribute to the global pattern of gene expression in Gsk-3α(-) (/) (-); Gsk-3ß(-) (/) (-)ESCs, we compared the gene expression profiles in Gsk-3α(-) (/) (-); Gsk-3ß(-) (/) (-) ESCs to mouse ESCs in which either Wnt/ß-catenin signaling or phosphatidylinositol 3-kinase (PI3K)-dependent insulin signaling are constitutively active. Our results show that Wnt signaling has a greater effect on up-regulated genes in the Gsk-3α(-) (/) (-); Gsk-3ß(-) (/) (-)ESCs, whereas PI3K-dependent insulin signaling is more responsible for the down-regulation of genes in the same cells. These data show the importance of Gsk-3 activity on gene expression in mouse ESCs, and that these effects are due to the combined effects of multiple signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...