Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Clin Invest ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722697

RESUMO

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske Iron-Sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, they underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA-seq revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in alpha-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.

2.
Cell Rep ; 43(2): 113680, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38241148

RESUMO

Extracellular vesicles (EVs) facilitate intercellular communication by transferring cargo between cells in a variety of tissues. However, how EVs achieve cell-type-specific intercellular communication is still largely unknown. We found that Notch1 and Notch2 proteins are expressed on the surface of neuronal EVs that have been generated in response to neuronal excitatory synaptic activity. Notch ligands bind these EVs on the neuronal plasma membrane, trigger their internalization, activate the Notch signaling pathway, and drive the expression of Notch target genes. The generation of these neuronal EVs requires the endosomal sorting complex required for transport-associated protein Alix. Adult Alix conditional knockout mice have reduced hippocampal Notch signaling activation and glutamatergic synaptic protein expression. Thus, EVs facilitate neuron-to-neuron communication via the Notch receptor-ligand system in the brain.


Assuntos
Vesículas Extracelulares , Neurônios , Animais , Camundongos , Ligantes , Transporte Proteico , Transdução de Sinais , Camundongos Knockout
3.
Nat Commun ; 15(1): 264, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238311

RESUMO

Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aß42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aß42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aß42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.


Assuntos
Doença de Alzheimer , MicroRNAs , Camundongos , Animais , Humanos , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , MicroRNAs/genética , Complexo de Inativação Induzido por RNA/genética , Interferência de RNA , Envelhecimento/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/toxicidade
4.
Leukemia ; 38(3): 491-501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155245

RESUMO

T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Camundongos , Animais , Fatores de Transcrição/genética , Timócitos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Timo/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
5.
Nat Cell Biol ; 25(10): 1478-1494, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749225

RESUMO

All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.


Assuntos
Histonas , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leucina/metabolismo , Histonas/genética , Histonas/metabolismo , Ferro/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Desmetilação
6.
J Immunol ; 211(9): 1376-1384, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37702745

RESUMO

IFN-γ-producing invariant NKT (iNKT)1 cells are lipid-reactive innate-like lymphocytes that are resident in the thymus and peripheral tissues where they protect against pathogenic infection. The thymic functions of iNKT1 cells are not fully elucidated, but subsets of thymic iNKT cells modulate CD8 T cell, dendritic cell, B cell, and thymic epithelial cell numbers or function. In this study, we show that a subset of murine thymic iNKT1 cells required TGF-ß-induced signals for their postselection development, to maintain hallmark TGF-ß-induced genes, and for expression of the adhesion receptors CD49a and CD103. However, the residency-associated receptor CD69 was not TGF-ß signaling-dependent. Recently described CD244+ c2 thymic iNKT1 cells, which produce IFN-γ without exogenous stimulation and have NK-like characteristics, reside in this TGF-ß-responsive population. Liver and spleen iNKT1 cells do not share this TGF-ß gene signature, but nonetheless TGF-ß impacts liver iNKT1 cell phenotype and function. Our findings provide insight into the heterogeneity of mechanisms guiding iNKT1 cell development in different tissues and suggest a close association between a subset of iNKT1 cells and TGF-ß-producing cells in the thymus that support their development.


Assuntos
Células T Matadoras Naturais , Fator de Crescimento Transformador beta , Animais , Camundongos , Linfócitos T CD8-Positivos , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL , Timo , Fator de Crescimento Transformador beta/metabolismo
7.
J Virol ; 97(7): e0065223, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310263

RESUMO

HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.


Assuntos
Infecções por HIV , HIV-1 , MicroRNAs , Humanos , HIV-1/fisiologia , Latência Viral/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo
8.
bioRxiv ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163059

RESUMO

T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of Tal1 or Lyl1 in T cell progenitors or inactivation of E2a, is sufficient to predispose mice to develop T-ALL. How E2a suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a , prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2a suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymus cellularity is a determinant of leukemogenesis.

9.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37252797

RESUMO

Epigenetic status-altering mutations in chromatin-modifying enzymes are a feature of human diseases, including many cancers. However, the functional outcomes and cellular dependencies arising from these mutations remain unresolved. In this study, we investigated cellular dependencies, or vulnerabilities, that arise when enhancer function is compromised by loss of the frequently mutated COMPASS family members MLL3 and MLL4. CRISPR dropout screens in MLL3/4-depleted mouse embryonic stem cells (mESCs) revealed synthetic lethality upon suppression of purine and pyrimidine nucleotide synthesis pathways. Consistently, we observed a shift in metabolic activity toward increased purine synthesis in MLL3/4-KO mESCs. These cells also exhibited enhanced sensitivity to the purine synthesis inhibitor lometrexol, which induced a unique gene expression signature. RNA-Seq identified the top MLL3/4 target genes coinciding with suppression of purine metabolism, and tandem mass tag proteomic profiling further confirmed upregulation of purine synthesis in MLL3/4-KO cells. Mechanistically, we demonstrated that compensation by MLL1/COMPASS was underlying these effects. Finally, we demonstrated that tumors with MLL3 and/or MLL4 mutations were highly sensitive to lometrexol in vitro and in vivo, both in culture and in animal models of cancer. Our results depicted a targetable metabolic dependency arising from epigenetic factor deficiency, providing molecular insight to inform therapy for cancers with epigenetic alterations secondary to MLL3/4 COMPASS dysfunction.


Assuntos
Neoplasias , Proteômica , Humanos , Animais , Camundongos , Histona-Lisina N-Metiltransferase/genética , Mutação , Neoplasias/genética , Epigênese Genética
10.
Sci Rep ; 13(1): 8734, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253812

RESUMO

Breast cancer risk continues to increase post menopause. Anti-estrogen therapies are available to prevent postmenopausal breast cancer in high-risk women. However, their adverse effects have reduced acceptability and overall success in cancer prevention. Natural products such as hops (Humulus lupulus) and three pharmacopeial licorice (Glycyrrhiza) species have demonstrated estrogenic and chemopreventive properties, but little is known regarding their effects on aromatase expression and activity as well as pro-proliferation pathways in human breast tissue. We show that Gycyrrhiza inflata (GI) has the highest aromatase inhibition potency among these plant extracts. Moreover, phytoestrogens such as liquiritigenin which is common in all licorice species have potent aromatase inhibitory activity, which is further supported by computational docking of their structures in the binding pocket of aromatase. In addition, GI extract and liquiritigenin suppress aromatase expression in the breast tissue of high-risk postmenopausal women. Although liquiritigenin has estrogenic effects in vitro, with preferential activity through estrogen receptor (ER)-ß, it reduces estradiol-induced uterine growth in vivo. It downregulates RNA translation, protein biosynthesis, and metabolism in high-risk women's breast tissue. Finally, it reduces the rate of MCF-7 cell proliferation, with repeated dosing. Collectively, these data suggest that liquiritigenin has breast cancer prevention potential for high-risk postmenopausal women.


Assuntos
Neoplasias da Mama , Glycyrrhiza , Feminino , Humanos , Neoplasias da Mama/prevenção & controle , Neoplasias da Mama/metabolismo , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Estrogênios/metabolismo , Glycyrrhiza/química , Receptor beta de Estrogênio/metabolismo , Biossíntese de Proteínas
11.
J Biol Chem ; 299(7): 104867, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247756

RESUMO

Age-associated bone marrow changes include myeloid skewing and mutations that lead to clonal hematopoiesis. Molecular mechanisms for these events are ill defined, but decreased expression of Irf8/Icsbp (interferon regulatory factor 8/interferon consensus sequence binding protein) in aging hematopoietic stem cells may contribute. Irf8 functions as a leukemia suppressor for chronic myeloid leukemia, and young Irf8-/- mice have neutrophilia with progression to acute myeloid leukemia (AML) with aging. Irf8 is also required to terminate emergency granulopoiesis during the innate immune response, suggesting this may be the physiologic counterpart to leukemia suppression by this transcription factor. Identifying Irf8 effectors may define mediators of both events and thus contributors to age-related bone marrow disorders. In this study, we identified RASSF5 (encoding Nore1) as an Irf8 target gene and investigated the role of Nore1 in hematopoiesis. We found Irf8 activates RASSF5 transcription and increases Nore1a expression during emergency granulopoiesis. Similar to Irf8-/- mice, we found that young Rassf5-/- mice had increased neutrophils and progressed to AML with aging. We identified enhanced DNA damage, excess clonal hematopoiesis, and a distinct mutation profile in hematopoietic stem cells from aging Rassf5-/- mice compared with wildtype. We found sustained emergency granulopoiesis in Rassf5-/- mice, with repeated episodes accelerating AML, also similar to Irf8-/- mice. Identifying Nore1a downstream from Irf8 defines a pathway involved in leukemia suppression and the innate immune response and suggests a novel molecular mechanism contributing to age-related clonal myeloid disorders.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Animais , Camundongos , Linhagem da Célula , Hematopoiese Clonal , Hematopoese , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética
12.
Mol Biomed ; 4(1): 11, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059938

RESUMO

CD95/Fas ligand (CD95L) induces apoptosis through protein binding to the CD95 receptor. However, CD95L mRNA also induces toxicity in the absence of CD95 through induction of DISE (Death Induced by Survival Gene Elimination), a form of cell death mediated by RNA interference (RNAi). We now report that CD95L mRNA processing generates a short (s)RNA nearly identical to shL3, a commercial CD95L-targeting shRNA that led to the discovery of DISE. Neither of the miRNA biogenesis proteins Drosha nor Dicer are required for this processing. Interestingly, CD95L toxicity depends on the core component of the RISC, Ago2, in some cell lines, but not in others. In the HCT116 colon cancer cell line, Ago 1-4 appear to function redundantly in RNAi. In fact, Ago 1/2/3 knockout cells retain sensitivity to CD95L mRNA toxicity. Toxicity was only blocked by mutation of all in-frame start codons in the CD95L ORF. Dying cells exhibited an enrichment of RISC bound (R)-sRNAs with toxic 6mer seed sequences, while expression of the non-toxic CD95L mutant enriched for loading of R-sRNAs with nontoxic 6mer seeds. However, CD95L is not the only source of these R-sRNAs. We find that CD95L mRNA may induce DISE directly and indirectly, and that alternate mechanisms may underlie CD95L mRNA processing and toxicity.

13.
Mol Cancer Res ; 21(4): 332-344, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573964

RESUMO

Immune checkpoint inhibitors (ICI) have transformed the treatment of melanoma. However, the majority of patients have primary or acquired resistance to ICIs, limiting durable responses and patient survival. IFNγ signaling and the expression of IFNγ-stimulated genes correlate with either response or resistance to ICIs, in a context-dependent manner. While IFNγ-inducible immunostimulatory genes are required for response to ICIs, chronic IFNγ signaling induces the expression of immunosuppressive genes, promoting resistance to these therapies. Here, we show that high levels of Unc-51 like kinase 1 (ULK1) correlate with poor survival in patients with melanoma and overexpression of ULK1 in melanoma cells enhances IFNγ-induced expression of immunosuppressive genes, with minimal effects on the expression of immunostimulatory genes. In contrast, genetic or pharmacologic inhibition of ULK1 reduces expression of IFNγ-induced immunosuppressive genes. ULK1 binds IRF1 in the nuclear compartment of melanoma cells, controlling its binding to the programmed death-ligand 1 promoter region. In addition, pharmacologic inhibition of ULK1 in combination with anti-programmed cell death protein 1 therapy further reduces melanoma tumor growth in vivo. Our data suggest that targeting ULK1 represses IFNγ-dependent immunosuppression. These findings support the combination of ULK1 drug-targeted inhibition with ICIs for the treatment of patients with melanoma to improve response rates and patient outcomes. IMPLICATIONS: This study identifies ULK1, activated downstream of IFNγ signaling, as a druggable target to overcome resistance mechanisms to ICI therapy in metastatic melanoma.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Interferon gama/farmacologia , Terapia de Imunossupressão , Tolerância Imunológica , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
14.
Cell Death Dis ; 13(12): 1078, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585400

RESUMO

Extended CAG trinucleotide repeats (TNR) in the genes huntingtin (HTT) and androgen receptor (AR) are the cause of two progressive neurodegenerative disorders: Huntington's disease (HD) and Spinal and Bulbar Muscular Atrophy (SBMA), respectively. Anyone who inherits the mutant gene in the complete penetrance range (>39 repeats for HD and 44 for SBMA) will develop the disease. An inverse correlation exists between the length of the CAG repeat and the severity and age of onset of the diseases. Growing evidence suggests that it is the length of uninterrupted CAG repeats in the mRNA rather than the length of poly glutamine (polyQ) in mutant (m)HTT protein that determines disease progression. One variant of mHTT (loss of inhibition; LOI) causes a 25 year earlier onset of HD when compared to a reference sequence, despite both coding for a protein that contains an identical number of glutamines. Short 21-22 nt CAG repeat (sCAGs)-containing RNAs can cause disease through RNA interference (RNAi). RNA hairpins (HPs) forming at the CAG TNRs are stabilized by adjacent CCG (in HD) or CUG repeats (in SBMA) making them better substrates for Dicer, the enzyme that processes CAG HPs into sCAGs. We now show that cells deficient in Dicer or unable to mediate RNAi are resistant to the toxicity of the HTT and AR derived HPs. Expression of a small HP that mimics the HD LOI variant is more stable and more toxic than a reference HP. We report that the LOI HP is processed by Dicer, loaded into the RISC more efficiently, and gives rise to a higher quantity of RISC-bound 22 nt sCAGs. Our data support the notion that RNAi contributes to the cell death seen in HD and SBMA and provide an explanation for the dramatically reduced onset of disease in HD patients that carry the LOI variant.


Assuntos
Doença de Huntington , Expansão das Repetições de Trinucleotídeos , Humanos , Interferência de RNA , Expansão das Repetições de Trinucleotídeos/genética , Repetições de Trinucleotídeos/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , RNA Mensageiro/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
15.
JCI Insight ; 7(11)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471950

RESUMO

The placenta is the primary organ for immune regulation, nutrient delivery, gas exchange, protection against environmental toxins, and physiologic perturbations during pregnancy. Placental inflammation and vascular dysfunction during pregnancy are associated with a growing list of prematurity-related complications. The goal of this study was to identify differences in gene expression profiles in fetal monocytes - cells that persist and differentiate postnatally - according to distinct placental histologic domains. Here, by using bulk RNA-Seq, we report that placental lesions are associated with gene expression changes in fetal monocyte subsets. Specifically, we found that fetal monocytes exposed to acute placental inflammation upregulate biological processes related to monocyte activation, monocyte chemotaxis, and platelet function, while monocytes exposed to maternal vascular malperfusion lesions downregulate these processes. Additionally, we show that intermediate monocytes might be a source of mitogens, such as HBEGF, NRG1, and VEGFA, implicated in different outcomes related to prematurity. This is the first study to our knowledge to show that placental lesions are associated with unique changes in fetal monocytes and monocyte subsets. As fetal monocytes persist and differentiate into various phagocytic cells following birth, our study may provide insight into morbidity related to prematurity and ultimately potential therapeutic targets.


Assuntos
Placenta , Nascimento Prematuro , Feminino , Expressão Gênica , Humanos , Recém-Nascido , Inflamação/metabolismo , Monócitos , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo
16.
Front Immunol ; 13: 845488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371057

RESUMO

T lymphocyte acute lymphoblastic leukemia (T-ALL) is a heterogeneous disease affecting T cells at multiple stages of their development and is characterized by frequent genomic alterations. The transcription factor LEF1 is inactivated through mutation in a subset of T-ALL cases but elevated LEF1 expression and activating mutations have also been identified in this disease. Here we show, in a murine model of T-ALL arising due to E2a inactivation, that the developmental timing of Lef1 mutation impacts its ability to function as a cooperative tumor suppressor or oncogene. T cell transformation in the presence of LEF1 allows leukemic cells to become addicted to its presence. In contrast, deletion prior to transformation both accelerates leukemogenesis and results in leukemic cells with altered expression of genes controlling receptor-signaling pathways. Our data demonstrate that the developmental timing of Lef1 mutations impact its apparent oncogenic or tumor suppressive characteristics and demonstrate the utility of mouse models for understanding the cooperation and consequence of mutational order in leukemogenesis.


Assuntos
Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Camundongos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição TCF/genética , Fatores de Transcrição/metabolismo
17.
PLoS Comput Biol ; 18(3): e1010022, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35358200

RESUMO

microRNAs (miRNAs) are (18-22nt long) noncoding short (s)RNAs that suppress gene expression by targeting the 3' untranslated region of target mRNAs. This occurs through the seed sequence located in position 2-7/8 of the miRNA guide strand, once it is loaded into the RNA induced silencing complex (RISC). G-rich 6mer seed sequences can kill cells by targeting C-rich 6mer seed matches located in genes that are critical for cell survival. This results in induction of Death Induced by Survival gene Elimination (DISE), through a mechanism we have called 6mer seed toxicity. miRNAs are often quantified in cells by aligning the reads from small (sm)RNA sequencing to the genome. However, the analysis of any smRNA Seq data set for predicted 6mer seed toxicity requires an alternative workflow, solely based on the exact position 2-7 of any short (s)RNA that can enter the RISC. Therefore, we developed SPOROS, a semi-automated pipeline that produces multiple useful outputs to predict and compare 6mer seed toxicity of cellular sRNAs, regardless of their nature, between different samples. We provide two examples to illustrate the capabilities of SPOROS: Example one involves the analysis of RISC-bound sRNAs in a cancer cell line (either wild-type or two mutant lines unable to produce most miRNAs). Example two is based on a publicly available smRNA Seq data set from postmortem brains (either from normal or Alzheimer's patients). Our methods (found at https://github.com/ebartom/SPOROS and at Code Ocean: https://doi.org/10.24433/CO.1732496.v1) are designed to be used to analyze a variety of smRNA Seq data in various normal and disease settings.


Assuntos
MicroRNAs , Regiões 3' não Traduzidas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , Sementes/genética , Análise de Sequência de RNA/métodos
18.
Sci Rep ; 12(1): 5130, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332222

RESUMO

6mer seed toxicity is a novel cell death mechanism that kills cancer cells by triggering death induced by survival gene elimination (DISE). It is based on si- or shRNAs with a specific G-rich nucleotide composition in position 2-7 of their guide strand. An arrayed screen of 4096 6mer seeds on two human and two mouse cell lines identified G-rich 6mers as the most toxic seeds. We have now tested two additional cell lines, one human and one mouse, identifying the GGGGGC consensus as the most toxic average 6mer seed for human cancer cells while slightly less significant for mouse cancer cells. RNA Seq and bioinformatics analyses suggested that an siRNA containing the GGGGGC seed (siGGGGGC) is toxic to cancer cells by targeting GCCCCC seed matches located predominantly in the 3' UTR of a set of genes critical for cell survival. We have identified several genes targeted by this seed and demonstrate direct and specific targeting of GCCCCC seed matches, which is attenuated upon mutation of the GCCCCC seed matches in these 3' UTRs. Our data show that siGGGGGC kills cancer cells through its miRNA-like activity and points at artificial miRNAs, si- or shRNAs containing this seed as a potential new cancer therapeutics.


Assuntos
MicroRNAs , Neoplasias , Regiões 3' não Traduzidas , Animais , Consenso , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sementes/genética , Sementes/metabolismo
19.
Cancer Res ; 81(18): 4696-4708, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34341073

RESUMO

Abnormalities in genetic and epigenetic modifications can lead to drastic changes in gene expression profiles that are associated with various cancer types. Small cell lung cancer (SCLC) is an aggressive and deadly form of lung cancer with limited effective therapies currently available. By utilizing a genome-wide CRISPR-Cas9 dropout screen in SCLC cells, we identified paired box protein 9 (PAX9) as an essential factor that is overexpressed in human malignant SCLC tumor samples and is transcriptionally driven by the BAP1/ASXL3/BRD4 epigenetic axis. Genome-wide studies revealed that PAX9 occupies distal enhancer elements and represses gene expression by restricting enhancer activity. In multiple SCLC cell lines, genetic depletion of PAX9 led to significant induction of a primed-active enhancer transition, resulting in increased expression of a large number of neural differentiation and tumor-suppressive genes. Mechanistically, PAX9 interacted and cofunctioned with the nucleosome remodeling and deacetylase (NuRD) complex at enhancers to repress nearby gene expression, which was reversed by pharmacologic HDAC inhibition. Overall, this study provides mechanistic insight into the oncogenic function of the PAX9/NuRD complex epigenetic axis in human SCLC and suggests that reactivation of primed enhancers may have potential therapeutic efficacy in treating SCLC expressing high levels of PAX9. SIGNIFICANCE: A genome-wide screen in small cell lung cancer reveals PAX9/NuRD-mediated epigenetic enhancer silencing and tumor progression, supporting the development of novel personalized therapeutic approaches targeting the PAX9-regulated network.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Fator de Transcrição PAX9/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Modelos Biológicos , Neoplasias/patologia , Fator de Transcrição PAX9/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Fatores de Transcrição/genética
20.
Cancer Res ; 81(15): 3985-4000, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224372

RESUMO

Ovarian cancer remains one of the deadliest gynecologic malignancies affecting women, and development of resistance to platinum remains a major barrier to achieving a cure. Multiple mechanisms have been identified to confer platinum resistance. Numerous miRNAs have been linked to platinum sensitivity and resistance in ovarian cancer. miRNA activity occurs mainly when the guide strand of the miRNA, with its seed sequence at position 2-7/8, is loaded into the RNA-induced silencing complex (RISC) and targets complementary short seed matches in the 3' untranslated region of mRNAs. Toxic 6mer seeds, which target genes critical for cancer cell survival, have been found in tumor-suppressive miRNAs. Many siRNAs and short hairpin RNAs (shRNA) can also kill cancer cells via toxic seeds, the most toxic of which carry G-rich 6mer seed sequences. We showed here that treatment of ovarian cancer cells with platinum led to increased RISC-bound miRNAs carrying toxic 6mer seeds and decreased miRNAs with nontoxic seeds. Platinum-tolerant cells did not exhibit this toxicity shift but retained sensitivity to cell death mediated by siRNAs carrying toxic 6mer seeds. Analysis of RISC-bound miRNAs in tumors from patients with ovarian cancer revealed that the ratio between miRNAs with toxic versus nontoxic seeds was predictive of treatment outcome. Application of the 6mer seed toxicity concept to cancer relevant miRNAs provides a new framework for understanding and predicting cancer therapy responses. SIGNIFICANCE: These findings demonstrate that the balance of miRNAs that carry toxic and nontoxic 6mer seeds contributes to platinum resistance in ovarian cancer.


Assuntos
MicroRNAs/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Platina/uso terapêutico , Feminino , Humanos , Platina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...