Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 43(8): 1383-1399, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37099805

RESUMO

As the global climate warms, a key question is how increased leaf temperatures will affect tree physiology and the coupling between leaf and air temperatures in forests. To explore the impact of increasing temperatures on plant performance in open air, we warmed leaves in the canopy of two mature evergreen forests, a temperate Eucalyptus woodland and a tropical rainforest. The leaf heaters consistently maintained leaves at a target of 4 °C above ambient leaf temperatures. Ambient leaf temperatures (Tleaf) were mostly coupled to air temperatures (Tair), but at times, leaves could be 8-10 °C warmer than ambient air temperatures, especially in full sun. At both sites, Tleaf was warmer at higher air temperatures (Tair > 25 °C), but was cooler at lower Tair, contrary to the 'leaf homeothermy hypothesis'. Warmed leaves showed significantly lower stomatal conductance (-0.05 mol m-2 s-1 or -43% across species) and net photosynthesis (-3.91 µmol m-2 s-1 or -39%), with similar rates in leaf respiration rates at a common temperature (no acclimation). Increased canopy leaf temperatures due to future warming could reduce carbon assimilation via reduced photosynthesis in these forests, potentially weakening the land carbon sink in tropical and temperate forests.


Assuntos
Florestas , Árvores , Temperatura , Aclimatação , Folhas de Planta
2.
Tree Physiol ; 35(11): 1249-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26496960

RESUMO

Arguments based on the biochemistry of photosynthesis predict a positive interaction between elevated atmospheric [CO2] and temperature on photosynthesis as well as growth. In contrast, few long-term studies on trees find greater stimulation of photosynthesis in response to elevated [CO2] at warmer compared with cooler temperatures. To test for CO2 × temperature interactions on leaf photosynthesis and whole-plant growth, we planted Eucalyptus globulus Labill. in climate-controlled chambers in the field at the Hawkesbury Forest Experiment research site, and investigated how photosynthetic enhancement changed across a range of seasonal temperatures. Trees were grown in a complete two-way factorial design with two CO2 concentrations (ambient and ambient + 240 ppm) and two temperatures (ambient and ambient + 3 °C) for 15 months until they reached ∼10 m height, after which they were harvested for biomass. There was significant enhancement of photosynthesis and growth with elevated [CO2], with the photosynthetic stimulation varying with season, but there was no significant effect of warming. Photosynthetic enhancement was higher in summer (+46% at 28 °C) than in winter (+14% at 20 °C). Photosynthetic enhancement as a function of leaf temperature was consistent with theoretical expectations, but was strongly mediated by the intercellular [CO2]/ambient [CO2] (Ci/Ca) ratio across seasons. Total tree biomass after 15 months was 66% larger in elevated CO2 (P = 0.017) with no significant warming effect detected. The fraction of biomass in coarse roots was reduced in warmed trees compared with ambient temperature controls, but there was no evidence of changed biomass allocation patterns in elevated CO2. We conclude that there are strong and consistent elevated CO2 effects on photosynthesis and biomass of E. globulus. It is crucial to consider stomatal conductance under a range of conditions to appraise the interactive effect of [CO2] and temperature on photosynthetic enhancement and subsequent implications for tree growth and forest productivity in future climates.


Assuntos
Dióxido de Carbono/farmacologia , Eucalyptus/fisiologia , Temperatura Alta , Fotossíntese/efeitos dos fármacos , Estações do Ano , Árvores/fisiologia
3.
Plant Cell Environ ; 33(12): 2001-11, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20573048

RESUMO

Under elevated atmospheric CO(2) concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO(2) effect on soil C inputs with time. We compiled a data set from 131 manipulation experiments, and used meta-analysis to test the hypotheses that: (1) elevated atmospheric CO(2) stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N. Our results confirm that elevated CO(2) induces a C allocation shift towards below-ground biomass compartments. However, the increased soil C inputs were offset by increased heterotrophic respiration (Rh), such that soil C content was not affected by elevated CO(2). Soil N concentration strongly interacted with CO(2) fumigation: the effect of elevated CO(2) on fine root biomass and -production and on microbial activity increased with increasing soil N concentration, while the effect on soil C content decreased with increasing soil N concentration. These results suggest that both plant growth and microbial activity responses to elevated CO(2) are modulated by N availability, and that it is essential to account for soil N concentration in C cycling analyses.


Assuntos
Atmosfera , Ciclo do Carbono , Dióxido de Carbono , Ciclo do Nitrogênio , Solo/análise , Árvores/crescimento & desenvolvimento , Biomassa , Fertilizantes
4.
Tree Physiol ; 23(15): 1051-9, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12975129

RESUMO

Nitrogen-fixing plant species may respond more positively to elevated atmospheric carbon dioxide concentrations ([CO2]) than other species because of their ability to maintain a high internal nutrient supply. A key factor in the growth response of trees to elevated [CO2] is the availability of nitrogen, although how elevated [CO2] influences the rate of N2-fixation of nodulated trees growing under field conditions is unclear. To elucidate this relationship, we measured total biomass, relative growth rate, net assimilation rate (NAR), leaf area and net photosynthetic rate of N2-fixing Alnus glutinosa (L.) Gaertn. (common alder) trees grown for 3 years in open-top chambers in the presence of either ambient or elevated atmospheric [CO2] and two soil N regimes: full nutrient solution or no fertilizer. Nitrogen fixation by Frankia spp. in the root nodules of unfertilized trees was assessed by the acetylene reduction method. We hypothesized that unfertilized trees would show similar positive growth and physiological responses to elevated [CO2] as the fertilized trees. Growth in elevated [CO2] stimulated (relative) net photosynthesis and (absolute) total biomass accumulation. Relative total biomass increased, and leaf nitrogen remained stable, only during the first year of the experiment. Toward the end of the experiment, signs of photosynthetic acclimation occurred, i.e., down-regulation of the photosynthetic apparatus. Relative growth rate was not significantly affected by elevated [CO2] because although NAR was increased, the effect on relative growth rate was negated by a reduction in leaf area ratio. Neither leaf area nor leaf P concentration was affected by growth in elevated [CO2]. Nodule mass increased on roots of unfertilized trees exposed to elevated [CO2] compared with fertilized trees exposed to ambient [CO2]. There was also a biologically significant, although not statistically significant, stimulation of nitrogenase activity in nodules exposed to elevated [CO2]. Root nodules of trees exposed to elevated [CO2] were smaller and more evenly spaced than root nodules of trees exposed to ambient [CO2]. The lack of an interaction between nutrient and [CO2] effects on growth, biomass and photosynthesis indicates that the unfertilized trees maintained similar CO2-induced growth and photosynthetic enhancements as the fertilized trees. This implies that alder trees growing in natural conditions, which are often limited by soil N availability, should nevertheless benefit from increasing atmospheric [CO2].


Assuntos
Alnus/fisiologia , Fixação de Nitrogênio/fisiologia , Árvores/fisiologia , Alnus/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/crescimento & desenvolvimento
5.
New Phytol ; 149(2): 247-264, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33874628

RESUMO

• Data from 13 long-term (> 1 yr), field-based studies of the effects of elevated CO2 concentration ([CO2 ]) on European forest tree species were analysed using meta-analysis and modelling. Meta-analysis was used to determine mean responses across the data sets, and data were fitted to two commonly used models of stomatal conductance in order to explore response to environmental conditions and the relationship with assimilation. • Meta-analysis indicated a significant decrease (21%) in stomatal conductance in response to growth in elevated [CO2 ] across all studies. The response to [CO2 ] was significantly stronger in young trees than old trees, in deciduous compared to coniferous trees, and in water stressed compared to nutrient stressed trees. No evidence of acclimation of stomatal conductance to elevated [CO2 ] was found. • Fits of data to the first model showed that growth in elevated [CO2 ] did not alter the response of stomatal conductance to vapour pressure deficit, soil water content or atmospheric [CO2 ]. Fits of data to the second model indicated that conductance and assimilation responded in parallel to elevated [CO2 ] except when water was limiting. • Data were compared to a previous meta-analysis and it was found that the response of gs to elevated [CO2 ] was much more consistent in long-term (> 1 yr) studies, emphasising the need for long-term elevated [CO2 ] studies. By interpreting data in terms of models, the synthesis will aid future modelling studies of responses of forest trees to elevated [CO2 ].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...